The effect of fiber diet on colonic cancer formation: the role of butyrate

Ari Fahrial Syam

Abstract

The majority of colon cancers occur sporadically. They are thought to be caused by non-inherited factors such as a combination of diet and environmental factors, which result in somatic mutations of specific genes. Among dietary factors butyrate which is derived from fermentable fibers may have important role as chemoprotector against colorectal cancer. The source of butyrate in daily diet mostly come from wheat products especially wheat bran. At molecular level, butyrate causes histone acetylation, favours differentiation, induces apoptosis and regulates the expressions of various oncogens. These effects suggest that butyrate may be protective against colorectal cancers. (Med J Indones 2003; 12: 127-31)

Keywords: colon cancer, dietary fiber, apoptosis

Colon cancer is a major cause of cancer related deaths in the industrialized world and mortality figures have not improved in the last few decades. The majority of colon cancer occurs sporadically. There is strong epidemiological evidence for the involvement of dietary factors. Colon cancers are thought to be caused by non-inherited factors such as combination of diet and environment, which result in somatic mutation of specific genes such as RB1, p16, ras or p53.

The two dietary components that have effect on colonic cytokinetics and tumor development are dietary fat and fiber. There are considerable data to support the concept that the type of fat or fiber is actually more important to tumor development than is the amount of either of these components in the diet. Among dietary factors, butyrate (derived from fermentable fiber) may be utilized as a chemopreventive agent for colon cancers. This short-chain fatty acid is a product of fiber fermentation by resident anaerobic bacteria in the normal colon. It is particularly important for several reasons: first, butyrate is the primary fuel source of colonocytes, it is utilized preferentially over glucose, glutamine and other short-chain fatty acids; second, butyrate has been shown to increase cellular proliferation in normal colonocytes, and finally, butyrate has been shown in cell culture system to increase markers of differentiation and induce apoptosis. However, the specific mechanism by which butyrate induces apoptosis have not been fully elucidated. Nevertheless, data from several laboratories have suggested a potential scenario for butyrate-induced apoptosis. This review presents informations about the balance between proliferation, differentiation and apoptosis in colonic epithelium, the role of apoptosis in colon cancer, and the possible mechanism by which butyrate induces apoptosis.
PROLIFERATION, DIFFERENTIATION AND APOPTOSIS IN COLONIC EPITHELIUM

One of the outstanding questions in cancer research is how the genetic changes that occur during carcinogenesis alter the balance between proliferation, differentiation and cell death, as all three characteristics can be directly measured in vitro. An increase in the population of cells can occur by increased mitosis/proliferation rate or by a decreased cell death rate.

In the colonic crypt, cell proliferation is confined to the lower two thirds of the crypt. As cells migrate up the crypt, the cells differentiate into absorptive enterocytes, mucous secreting goblet cells or enteroendocrine cells. There is continuous movement of cells up the crypts and this is tightly coupled to differentiation. The fate of the cells once they reach the top of the crypt is a matter of some controversy, as the process is poorly understood. Exfoliation could be due to a programmed cell death mechanism (apoptosis). As disruption of cell-to-cell contact occurs during apoptosis, loss of the cells at the top of the crypt could be a direct consequence of apoptosis rather than passive or mechanical mechanisms.10

Total crypt cell number and phenotype are strictly maintained by a balance between cell proliferation, differentiation and apoptosis. Dysregulation of the balance has a significant consequence for colonic crypt homeostasis, leading to the development of adenomas and eventually cancer.11

THE ROLE OF APOPTOSIS IN COLON CANCER

Colorectal cancer develops as a result of the pathologic transformation of normal colonic epithelium to an adenomatous polyp and in the end to an invasive cancer. The multistep progression requires years and possibly decades and is accompanied by a number of recently characterized genetic alterations. There is a number of genes which are mutated during colorectal carcinogenesis. Mutations in two classes of genes, tumor suppressor genes and proto-oncogenes, are thought to give a proliferative advantage to cells and contribute to the development of the malignant phenotype.

Programmed cell death (apoptosis) is a physiological process that plays an essential role in normal tissue turnover and embryonic development. It is a dominant manner in which cells die in vivo. Its primary function is to balance cell proliferation, removing redundant cells in a manner, which does not induce an inflammatory reaction or potential harm to the host.12 Three morphological stages have been identified in cells undergoing apoptosis; in the initial stage, the cells shrink in size, cellular chromatin condenses and organelles begin to aggregate. The second stage is characterized by membrane blebbing, where small portions of plasma membrane form vesicles containing various cellular components, which bud off from the main body of the cell. In the final stage, nuclear material and cellular structures within these apoptotic bodies undergo degeneration. It is important to note that apoptosis is quite distinct from necrosis, as necrosis releases cellular contents and induces inflammation.12

Apoptosis is characterized by the need for new gene expression. Several genes that control the regulation of apoptosis have been identified, such as Bcl-2, p53 and cmyc. The p53 gene affects cell cycle progression; the resulting expression of p53 protein causes cell cycle arrest at G1 stage, allowing time for damaged DNA to repair itself when the damage is repairable.13 The p53 gene is located on the short arm of chromosome 17, which is deleted in 75 % of colorectal cancers.14 A study showed that Bcl-2 null mice exhibited increased loss of small intestinal cells by exfoliation and a significant reduction in mitotic progenitor cells, indicative of an important functional role for Bcl-2 in the regulation of cellular turnover in the intestine.15

![Figure 1. Tissue homestasis in the normal colonic crypt relies on a balance between proliferation, differentiation and apoptosis. Rapid apoptosis occur in the proliferation zone as a response to cell damage and is largely p-53 dependent (Merrit, 1994).]

10 Merrit, 1994
11
12
13
14
15
BUTYRATE INDUCES APOPTOSIS

Butyrate, a short chain (four-carbon) fatty acid is a fermentation product of dietary fiber such as wheat bran by resident anaerobic bacteria in the normal colon. Some studies showed that wheat bran produced significantly higher fecal butyrate levels (6-10 times more) than fiber-free diet.8,16,17 Charles et al found that 20% wheat bran diet delivered a higher butyrate level in colon than fiber free diet.17

Previous studies examining the protective effect of dietary fiber on colonic neoplasia have pointed to butyrate as the key mediator of these effects (see figure 2).18

Butyrate is a natural component of colonic milieu and has been shown to inhibit the growth of colonic carcinoma cells, both in vivo and in vitro. A study showed that butyrate prevented and decreased growth of chemically induced colonic cancer in rat. In vitro, butyrate has been shown to inhibit growth of colonic carcinoma cells such as HT-29 and LM 1215.19 Another study found that butyrate could arrest colon cancer cells in G\textsubscript{1}.20

In vivo studies using rat models with large bowel cancer indicated that high-fiber diets that are associated with high butyrate levels prevented or decreased the incidence of colon cancers. In vitro studies, butyrate has been shown to slow the proliferation and promote the expression of phenotypic markers of differentiation in colon cancer cell lines. In addition, butyrate had also been shown to have another effects on cells in vitro and on tumor cells, i.e. inducing apoptosis.6

![Figure 2. Effects of short-chain fatty acids (SCFA) on colonic epithelial cells at different stages of the adenoma-carcinoma sequence (Scheppach et al 1995)18](image-url)
The specific mechanisms by which butyrate induces apoptosis are not known. Nevertheless data from several studies have suggested a potential scenario for butyrate-induced apoptosis. Apoptosis induction by butyrate is a novel pathway, including activating caspase-3 and requiring new protein synthesis but independent of p53. The p53 promotes apoptosis and G1 arrest to allow the cell enough time to undergo DNA repair prior to cell division. In addition, butyrate is known to induce a variety of changes within nucleus, including histone hyperacetylation due to inhibition of histone deacetylase, and DNA methylation. Histone hyperacetylation generally has been associated with both a decrease in cell growth and the activation of specific genes.

Butyrate is present in colon together with unconjugated bile acids. The unconjugated bile acids including deoxycholic acid (DCA) and deoxycholic acid (DCA) have been shown to be tumor promoting factors in animal studies and raised levels of secondary bile acids have been reported in patients with adenomatous polyps and colon cancer. However, until now, their mechanism of action is poorly understood.

McMillan et al showed that bile acids were able to inhibit the apoptosis-inducing effects of the short chain fatty acid, butyrate. Bile acids significantly inhibited the induction of apoptosis by butyrate in AA/C1 cells, but the survival-inducing effects of bile acids on AA/C1 cells could be overcome by increasing the concentration of sodium butyrate in AA/C1 cells. From these studies, we can see the beneficial effects of butyrate regarding the protection against colon cancer, due to its ability to induce apoptosis in colon cells per se, and to the inhibition of the survival effects provided by secondary bile acids.

In conclusion, the balance between cell growth, differentiation and cell death maintains tissue homeostasis in the colonic crypt. Deregression of these processes plays an important role in the colonic carcinogenesis. Butyrate a four carbon fatty acid produced by fermentation of fiber can promote differentiation and apoptosis in a variety of colon tumor cell lines. However, the molecular mechanisms by which butyrate mediates its effects are not well understood. Studies in these areas are of potential clinical interest, because agents that promote differentiation and apoptosis in colon cancer cells may be used in the strategies directed toward the prevention and treatment of colon cancer.

REFERENCES

