P-7

Sequencing a 903 nucleotide *car*A gene of *Salmonella typhi* obtained through PCR employing Ca-3 and Ca-6 primers

Ari Rudiretna^{1,2}, A. Saifuddin Noer^{1,2}, Sarjono Kisman^{1,3}, Oei Ban Liang^{1,2}

Abstrak

Salmonella typhi adalah bakteri patogen penyebab demam tifoid pada manusia dan informasi mengenai gen yang bertanggung jawab pada patogenitas belum diketahui. Penelitian ini merupakan bagian dari penelitian yang bertujuan utuk isolasi dan karakterisasi gen-gen S. typhi yang spesifik atau diekspresi hanya in vivo untuk pemahaman mekanisme molekuler penyakit demam tifoid, terutama pada tingkat DNA. Gen ivi (in vivo induced) Salmonella typhimurium yang ditemukan dengan cara IVET (in vivo expression technology) yang berperan pada patogenesis penyakit tifoid pada mencit, digunakan untuk identifikasi gen S. typhi yang dimaksud. Makalah ini mendiskusikan sekuens nukleotida S. typhi sebesar 0,9 kb, fragmen hasil amplifikasi PCR menggunakan primer CA-3 dan CA-6. Primer dirancang berdasarkan sekuens nukleotida gen struktural carA dari E. coli K12, dan dipergunakan untuk amplifikasi ekstensi bagian fragmen DNA sebesar 618 bp yang sebelumnya pernah dilaporkan. Fragmen 0,9 kb dianalisa menggunakan ensim restriksi Hinfl dan Sau31 dan diklon ke dalam MosBlue E. coli dengan menggunakan vektor pMosBlue T. Sisipan plasmid rekombinan diisolasi menggunakan ensim restriksi BamHI dan NdeI dan disekuens dengan cara Sanger menggunakan primer universal T7, CA-3, CA-4 dan CA-6. Hasil sekuensing menunjukkan fragmen DNA 0,9 kb terdiri dari 903 bp. Analisa sekuens nukleotida dari fragmen DNA 903 bp ini dan menggabungkannya dengan sekuens dari fragmen 618 bp yang telah dilaporkan, menunjukkan bahwa gen carA yang lengkap dan sebagian kecil gen carB dari S. typhi telah diuraikan.

Abstract

Salmonella typhi is a pathogenic bacteria that causes typhoid fever in man and information regarding genes responsible for pathogenicity had not been known. This research had been part of a larger design with the objective to isolate and characterize S. typhi genes that are specific or expressed only in vivo. It is principally an effort to understand the molecular mechanism, especially at the DNA level, of the typhoid disease. The ivi (in vivo induced) genes of Salmonella typhimurium, discovered through IVET (In Vivo Expression Technology), that are thought to be intimately related to the pathogenesis mechanism of typhoid like diseases in mice were used in the identification of the intended S. typhi genes. This paper will discuss the nucleotide sequence of a 0.9 kb S. typhi PCR fragment amplified using CA-3 and CA-6 primers. These primers were designed based on the nucleotide sequence of the structural carA gene of E. coli K12 and can be used to amplify part of the extension of the 618 bp DNA fragment reported before. The 0.9 kb fragment was analyzed using HinfI and Sau3I restriction enzymes, then cloned into E. coli MosBlue using the pMosBlue T vector. The insert of the recombinant plasmids was isolated using BamHI and NdeI restriction enzymes and sequenced by the dideoxy Sanger method using universal, T7, CA-3, CA-4 and CA-6 primers. The results of all these sequencing experiments had shown without any doubt, that the insert - the 0.9 kb S. typhi DNA fragment - consisted of 903 bp. Analysing the nucleotide sequence of the 903 bp fragment and combining this with the nucleotide sequence of the previously reported 618 bp DNA fragment, revealed that the complete carA gene and a small part of the carB gene of S. typhi had been elucidated.

INTRODUCTION

Typhoid fever is globally very wide spread and is an endemic disease, mostly prevalent in developing countries. The disease is caused by a pathogenic bacteria, *Salmonella typhi* that enters the human body through food and drink. In Indonesia, the mortality

¹Inter University Research Center on Biotechnology,

²Department of Chemistry,

³Department of Pharmacy, Institut Teknologi Bandung, Bandung, Indonesia. rate due to typhoid disease tends to increase, so that it had become a health problem, which need close and serious attention.

Information regarding molecular pathogenesis and response of the bacterial host cell is very essential for efforts to combat the disease through diagnosis, therapy and immunization. Some light had been shed by the development of a technique called IVET (In Vivo Expression Technology) by Mekalanos et. al., who had discovered the ivi (in vivo induced) genes of *Salmonella typhimurium* which are induced and expressed only in the host cell in mice. These genes are thought to be intimately related to the pathogenesis mechanism of typhoid-like diseases in mice, and were used in the identification of the intended S. typhi genes.

This research had been part of a larger design with the objective to isolate and characterize *S. typhi* genes that are specific or expressed only in vivo. It is principally an effort to understand the molecular mechanism, especially at the DNA level, of typhoid disease through the recombinant DNA and PCR technologies approach.

0.6 kb PCR amplified fragments of *S. typhi*, *S. typhimurium*, and *E. coli* K12 had been obtained using CA-1/CA-2 primers; these fragments were then sequenced. Analysis of the nucleotide sequences of the *S. typhi* fragment showed a similar sequence to the upstream region of the *car*A gene of *S. typhimurium* LT2. Some nucleotide differences in the sequences were noticed^{1,2}.

Attempts had been successfully made to isolate the complete *car*A genes of *S. typhi* and *S. typhimurium* in order to obtain information related to the degree of homology between the two *car*A genes and between these two genes and the *car*A gene of *E. coli* K12. For this purpose, CA3/CA-6 primers were constructed and used for PCR amplification of those *car*A genes, resulting in 0.9 kb DNA fragments. The 0.9 kb DNA fragment of *S. typhi* was proven to be an extension of the 0.6 kb fragment obtained earlier from PCR with CA-1/CA-2 primers.

METHODOLOGY

This research consists of the following five steps, namely: designing the primers that will be used in a PCR process; amplifications of the 0.9 kb DNA fragment of *S. typhi*; restriction analyses of the DNA fragment using *Sau*3AI and *Hinf*I restriction enzymes; cloning the DNA fragment using the pMos-Blue T vector with the *E. coli* MosBlue host. The plasmids of several white recombinant clones were then subjected to restriction analyses using *BamH*I and *NdeI* enzymes and sequencing of the insert of recombinant plasmids of *S. typhi* were also carried out.

Designing the primers

The CA-3/CA-6 primers that were used for the PCR process, were designed based on the nucleotide sequence of the conserved area of the *car*A and part of the *car*B structural genes, which form part of the *car*AB operon of *E. coli* K12. The construction of

primers were carried out using the Genmon, the proteolize, and the primer detective computer softwares.

Amplification of the 0.9 kb DNA fragment of S. typhi

The chromosomal DNA template that was used in the PCR process was obtained by lysis of a single colony of the culture of *S. typhi* using a lysis buffer³.

The reaction of the PCR process had a total volume of 50 µl and consisted of 1x PCR buffer (Pharmacia), 200 µM of dNTP mixture, 10 µl of DNA template, and 20 pmol each of the primers. The amplification reaction was carried out in 30 cyles of denaturation at 94°C for 60 seconds, annealing at the various temperatures (50° C, 52° C, 53° C, 54° C, and 55° C) for 60 seconds, and extension at 72°C for 60 seconds. For the last cycle, the extension time was four minutes. The PCR product was separated on 2 % agarose gel and stained by ethidium bromide. As DNA marker, DNA fragments of pUC19 cut with *Hinf*I (1,419 bp; 517 bp; 397 bp, 214 bp; and 75 bp) were used.

Restriction analyses of the PCR products

Restriction analyses were carried out on the 0.9 kb DNA fragment of *S. typhi* using the 0.9 kb DNA fragment of *E. coli* K12 as positive control. Restriction analyses were done with *Sau*3AI and *Hinf*I enzymes (Amersham). The restriction fragments were separated on 2 % agarose gel and stained by ethidium bromide. As DNA marker, DNA fragments of pUC19 cut with *Hinf*I were used.

The cloning processes of the 0.9 kb DNA fragments of S. typhi

The 0.9 kb DNA fragments of *S. typhi* was cloned using pMosBlue T vector with *E. coli* MosBlue host. The cloning process was carried out according to the procedure that was in the pMosBlue T kit (Amersham). Several white recombinant clones were taken, followed by the isolation of the plasmids from those clones. The plasmid isolation was done using the minipreparation lysis by alkali method. Those recombinant plasmids were then restriction analysed using *BamH*I and *NdeI* enzymes (Amersham).

Sequencing of the insert of the recombinant plasmids of S. typhi

The sequencing processes were done using the T7 sequencing kit (Pharmacia) and Thermo Sequenase Radiolabeled Terminator Cycle Sequencing kit (Amersham). As the primers of the sequencing processes, the universal, T7 promoter, CA-3, CA-4, and CA-6 primers were used.

RESULTS AND DISCUSSION

The computer analysis resulted in a set of a sense primer, termed CA-3 and an antisense primer, termed CA-6. The CA-3 primer has the following DNA sequence: 5' GGCAAAAGAAGT GACCACCGC 3' and the CA-6 primer has the following DNA sequence 5' CAGTGAATCGGCT GATGTAGG 3'.

Using the genomic DNA of *S. typhi* as template, the PCR with the above primers resulted in the amplification of a 0.9 kb DNA fragment, and the genomic DNA of *E. coli* K12 was used as a positive control for the PCR process. This 0.9 kb DNA fragment of *S. typhi* was proven to be an extension of the 0.6 kb fragment obtained earlier from PCR with CA-1/CA-2 primers. The analyses of the PCR products are shown in Figure 1.

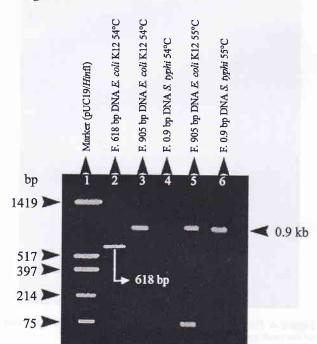


Figure 1. 0.9 kb PCR Amplified Fragments of S. typhi and E. coli K12.

Line 1: DNA marker, the DNA fragments of pUC19 cut with Hinf1 (1419 bp, 517 bp, 396 bp, 214 bp and 75 bp); line 2: 0.6 kb PCR amplified fragment of E. coli K12 using CA-1/CA-2 primers; line 3: 0.9 kb PCR amplified fragment of E. coli K12 using CA-3/CA-6 primers, annealing temperature at 54°C; line 4: 0.9 kb PCR amplified fragment of S. typhi using CA-3/CA-6 primers, annealing temperature at 54°C; line 5: 0.9 kb PCR amplified fragment of E. coli K12 using CA-3/CA-6 primers, annealing temperature at 54°C; line 5: 0.9 kb PCR amplified fragment of E. coli K12 using CA-3/CA-6 primers, annealing temperature at 55°C, line 6: 0.9 kb PCR amplified fragment of S. typhi using CA-3/CA-6 primers, annealing temperature at 55°C. According to the literature, the 905 bp DNA fragment of *E. coli* K12 was known to contain one recognition site of *Sau*3AI and three recognition site of *Hinf*I. Restriction of this DNA fragment with *Sau*3AI enzyme would then result in two fragments of 444 bp and 461 bp length. And restriction of this DNA fragment with *Hinf*I would then result in four fragments of 220 bp, 506 bp, 171 bp and 18 bp length.

Based on the analysis results using gel agarose electrophoresis, restriction analyses of the 0.9 kb PCR amplified DNA fragment of *E. coli* K12 using *Sau*3AI and *Hinf*I enzymes yielded the same theoretically intended fragments. Whereas, restriction analysis of the 0.9 kb PCR amplified DNA fragment of *S. typhi* using the *Sau*3AI enzyme gave three fragments of 0.45 kb, 0.25 kb and 0.2 kb length. Using the *Hinf*I enzyme, the 0.9 kb *S. typhi* DNA fragment gave three fragments of 0.4 kb, 0.2 kb, and 0.1 kb length. The restriction analyses results were shown in Figure 2.

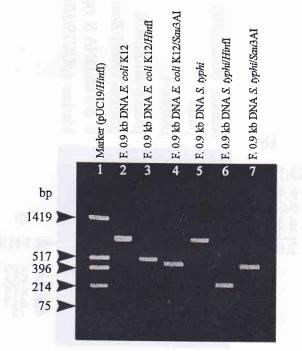


Figure 2. Restriction analyses of 0.9 kb PCR amplified DNA fragments of S. typhi and E. coli K12 using Sau3A1 and HinfI enzymes.

Line 1: DNA marker, the DNA fragments of pUC19 cut with Hinfl (1419 bp, 517 bp, 396 bp, 214 bp and 75 bp); line 2: 0.9 kb PCR amplified DNA fragment of E. coli K12, line 3: 0.9 kb PCR amplified DNA fragment of E. coli K12 cut with Hinfl, line4 : 0.9 kb PCR amplified DNA fragment of E. coli K12 cut with Sau3A1, line 5: 0.9 kb PCR amplified DNA fragment of S. typhi; line 6: 0.9 kb PCR amplified DNA fragment of S. typhi cut with Hinfl, line 7: 0.9 kb PCR amplified DNA fragment of S. typhi cut with Sau3A1 These restriction fragments of *S. typhi* were found to be different from those of *E. coli* K12. This is probably due to the difference in position of the recognition site of these enzymes on each of the DNA fragments. This will later on be proven in the nucleotide sequence of the 0.9 kb DNA fragment of *S. typhi*.

These DNA fragments were then cloned using the pMosBlueT vector and *E. coli* MosBlue host. Several white recombinant clones were obtained. The plasmids of several clones were then subjected to restriction analyses using *Bam*HI and *NdeI*. This characterisation was carried out to prove that the insert in the recombinant plasmid is the 0.9 kb DNA fragment of *S. typhi*. These restriction analyses had shown that the the insert of the recombinant plasmids were the intended 0.9 kb DNA fragment of *S. typhi*. The restriction analyses results are shown in Figure 3.

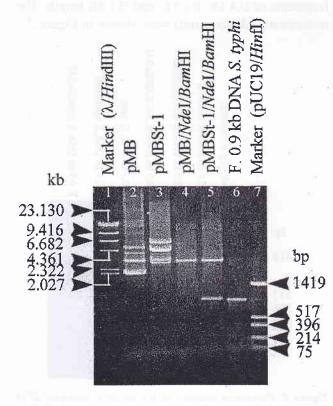


Figure 3. Analysis of S. typhi Recombinant DNA

Line 1: DNA marker, the DNA fragments of the DNA cut with HindIII (23.130 kb, 9.416 kb, 6.682 kb, 4.361 kb, 2.322 kb and 2.027 kb); line 2: E. coli MosBlue recombinant plasmid uncut; line 3: S. typhi recombinant plasmid uncut; line 4: E. coli Mos-Blue recombinant plasmid cut with BamHI and NdeI; line 5: S. typhi recombinant plasmid cut with BamHI and NdeI; line 6: 0.9 kb PCR amplified DNA fragment of S. typhi; line 7: DNA marker, the DNA fragments of pUC19 cut with HinfI (1419 bp, 517 bp, 396 bp, 214 bp and 75 bp). Sequencing of the insert of the *S. typhi* recombinant plasmid (pMB-St1) using universal, T7, CA-3, CA-4, and CA-5 primers had shown, that the inserts were 903 bp DNA fragments. Combining this with the nucleotide sequence of the 618 bp DNA fragment of *S. typhi* that was obtained earlier, the result was the proof of existence of a 1499 bp DNA fragment in *S. typhi*.

This 1499 bp DNA fragment consists of the the *car*AB operon promotor, the *car*A structural gene, the *car*A-*car*B intermediate region and the upstream part of the *car*B structural gene. The nucleotide sequence of the *car*AB operon promotor and of the *car*A gene of *S. typhi* had been submitted to and accepted by the GenBank Database with the access number AF012246, 3-July-1997. The part of the autoradiogram that showed the nucleotide sequence of the specific region in the *car*A gene of *S. typhi* is shown in Figure 4 as an example.

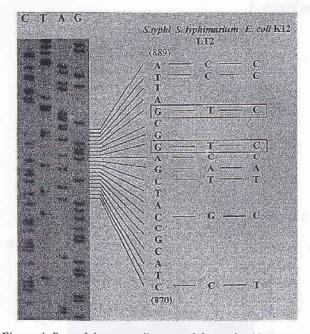


Figure 4. Part of the autoradiogram of the nucleotide sequence of the carA gene of S. typhi.

Nucleotide sequences of corresponding parts of S. typhi, S. typhimurium LT2 (from GenBank) and E. coli K12 (from GenBank) were shown.

Analysis of the 1499 bp nucleotide sequence resulted in a two tandem promotor that was termed promotor-1 (P1) and promotor-2 (P2). P1 starts at base no. 24 and ends at base no. 91 while P2 starts at base no. 92 and ends at base no. 123. The start codon (TTG) of the *car*A gene is at base no. 124 - 126, and its stop codon (TAA) is at base no. 1270 - 1272. The start co-

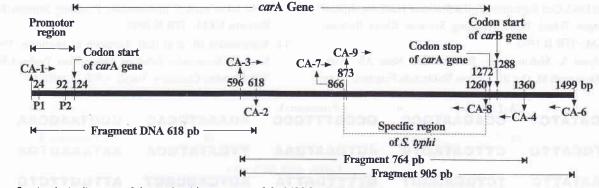


Figure 5. Analysis diagram of the nucleotide sequence of the 1499 bp PCR DNA fragment of S. typhi.

don of the *car*B gene (ATG) is at base no. 1288-1290. Diagram analysis of the nucleotide sequence of the 1499 bp PCR DNA fragment of *S. typhi* is shown in Figure 5.

CONCLUSIONS

- 0.6 kb and 0.9 kb DNA fragments of *S. typhi* had been successfully amplified using PCR with CA-1 / CA-2 and CA-3 / CA-4 primers. The PCR amplified 0.6 kb and 0.9 kb DNA fragments of *S. typhi* had been successfully cloned with the pMosblue T vector and *E. coli* MosBlue host.
- 2. The recombinant plasmids of the recombinant clones were subsequently subjected to restriction analyses using *Hind*III and *Eco*RI for the 0.6 kb clone and *Bam*HI and *Nde*I for the 0.9 kb clone. The analyses had shown that the inserts of the recombinant plasmids were the intended 0.6 kb and 0.9 kb DNA fragments.
- 3. Sequencing of the inserts of the recombinant plasmids were carried out by the dideoxy Sanger method, and showed that the inserts were a 618 bp and 903 bp DNA fragment respectively.
- 4. Analysis of the nucleotide sequences of these two DNA fragments and combination thereof resulted in a 1499 bp. DNA fragment consisting of a 123 bp *car*AB operon promotor, a 1149 bp *car*A structural gene, a 15 bp carA-*car*B intermediate region, and a 212 bp upstream part of the *car*B structural gene.
- 5. Further analysis of the 1499 bp DNA fragment in relation to the restriction analyses previously carried out on the 618 bp and 903 bp DNA fragments using *Eco*RV, *ClaI*, *Sau*3AI, and *HinfI* restriction enzymes, is in agreement with the known restriction sites starting at : bp no. 459 for *Eco*RV, bp no. 461 for *ClaI*, bp no. 256, 370, 754, and 1041 for *Sau*3AI, and bp no. 330, 363, 816, 1078, 1320, and 1491 for *HinfI*.

REFERENCES

- Rudiretna A, Noer AS, Kisman S, Oei BL. Amplification And Sequencing of a 0.6 kb Salmonella typhi DNA Fragment Employing CA-1 and CA-2 Primer. Proceeding Indonesian Biotechnology Conference (In Press) 1997.
- Noer AS, Rudiretna A, Kisman S, Oei BL. Studi Homologi Fragmen DNA 618 pasang basa gen carA Eschericia coli, Salmonella typhimurium, dan Salmonella typhi. Prosiding Seminar Kimia Bersama UKM - ITB III (In Press) 1997.
- Noer AS, Martasih F, Mulyani S, Muktiningsih, Wirahadikusumah M. Analisis Variasi Urutan Nukleotida D-Loop MtDNA Manusia Dari Beberapa Daerah Di Indonesia. Prosiding Seminar Kimia Bersama UKM - ITB I 1994.
- 4. Cabello F, et.al (Ed). Biology of *Salmonella*, Plenum press. New York pp 1993; 121-9, 131-9.
- Clarke JM. Novel Non-Templated Nucleotide Addition Reactions Catalyzed by Procaryotic an Eucaryotic DNA Polymerases Nucl Acids. Res 1988; 16: 9677.
- Glandsdorff N. Biosynthesis of Arginine and Polyamines. In Neidhardt, F.C. (ed): *Escherichia coli* and *Salmonella typhimurium*, Cellular and Molecular Biology, American Society for Microbiology Washington DC, 1987; 1: 321-44.
- Innis MA, Gelfand H. Optimization of PCR. Innis M.A, et.al.(eds): PCR Protocols. A Guide to Methods And Applications, Academic Press Inc California 1990; 3-12.
- Heithoff DM, Conner CP, Hanna PC, Julio SM, Hentschel U, Mahan MJ. Bacterial Infection as Assessed by In Vivo Gene Expression. Proc Natl Acad Sci 1997; 94: 934-9.
- Mahan MJ, Slauch JM, Mekalanos JJ, Selection of Bacterial Virulence Genes That Are Specifically Induced In Host Tissues. Science 1991; 259: 686-8.
- Marchuk D, Drumm M, Saulino A, Collis FS. Construction of T-vectors, A Rapid and General System for Direct Cloning of Unmodified PCR Products. Nucl Acids Res 1991; 19: 1154.
- Mekalanos JJ. Environmental Signal Controling Expression of Virulence Determinants in Bacteria. Minireview, J of Bacteriology 1992; 174(1): 1-7
- 12. Muktiningsih, Mulyani S, Rudiretna A, Noer AS, Wirahadikusumah M, Oei BL. Analisis Homologi Beberapa Frag-

Med J Indones

men DNA Gen Karbamoil Fosfat Sintetase Hasil Amplifikasi Dengan Teknik PCR. Prosiding Seminar Kimia Bersama UKM - ITB II 1995.

13. Mulyani S, Muktiningsih, Rudiretna A, Noer AS, Wirahadikusumah M, Oei BL. Urutan Nukleotida Fragmen 0,6 kb DNA lokus pyrA S. typhimurium. Prosiding Seminar Kimia Bersama UKM - ITB II 1995.

 Wyngaarden JB, et al (Ed). Textbook of Medicine, 19th ed, Kaye D, Salmonella Infection Other Than Typhoid Fever. WB Saunders Company, Tokyo. 1992; 2: 1691-4.

GCCCATATCT	$ \begin{array}{c} \text{CA-1 primer} & \rightarrow \\ \textbf{CCAGAATGCC} \end{array} $	Promotor-1 GCCGTTTTGCC	AGAAATCCAC	GGGTAAGCAA	
				Promotor-2	
ATTTGCATTG	CTTCATACTG	Астбаатбаа	TTGATATGCA	AATAAAGTGA	
1990 1990 1990 1990 19, 10, 10 1990 19, 1000 1990 199		Coden start ca	rA gene		
GTGAATATTC	TCTGGAGGGT	GTTTTOATTA	AGTCAGCGCT	ATTGGTTCTG	
GAAGAGGGAA	CCCAGTTTCA	CGGTCGGGCC	ATAGGGGCAA	CAGGTTCGGC	
GGTTGGGGAA	GTCGTTTTCA	ATACTTCAAT	GACCGGTTAT	CAAGAAATCC	
Sau3A1					
TCACTGATCT	TCCTATTCCG	CCAAATCGTC	ACTCTAGCTA	TCCCATATTG	
			Hinfl		
GTAATGTCGG	CACCAATGAA	GCCGATGAAG	AATCTTTCTC	AGGTTCATGC	
	Hinf1 S	au3AT			
GCAAGGTTTA	GTGATTCGCG	ATCTGCCGTT	GATTGCCAGC	AACTTCCGTA	
ACACCGAAGA	CCTCTCTTCC	TTGAGCCTGA	AACGCCATAA	CATCGTGGCG	
	Clal				
EcoRV					
ATTGCCGATA	TCGATTCGCG	CAAGCTGACC	CGACTGCTGC	AACTTAAAGG	
CGCACAGAAC	GGCTGCATCA	TTGCAGGCGA	TAGCCCGGAT	GCGAACGTGG	
CGCTGGAAAA	AGCGAAAGCA	TTTCCTGGAC	TGAACGGTAT	GGATCTGGCA	
CA-3 pr				GUATOTUUOA	
\leftarrow cCA-2 pri					
AAAGAAGTGA	CCACCGCGGA	AACTTACCGC	TGGACGCAGG	GTAGCTGGAC	
GCTGAAAGAC	GGTTTACCGG	AAGCGAAATC	TGAGGATGAC	CTGCCGTTCC	
ACGTGGTGGC	CTACGATTTT	GGCGCCAAGC	GCAACATTCT	ACGTATGCTG	
Sau3A1				AUGIAIGUTU	
GTGGATCGCG	GCTGCCGCCT	GACGGTGGTG	CCAGCGCAAA	CCTCTGCTGA	
	Hinf			CONCIDENTIAL	
AGAGGTGCTG	AAAATGAATC	CGGACGGCAT	CTTCCTGTCG	AACGGCCCTG	
GCGACCCGGC	GCCGTGCGAC	TACGCCATCG	AGGCGATTAA	GAAATTCCTC	
CAGACCGACA	TTCCTGTGTT	CGGCATCTGC	CTCGGCCATC	AACTGCTGGC	
GCTGGCGAGC	GGTGCGAAGA	CCGTTAAGAT	GAAGTTCGGC	CATCACGGCG	
GCAACCATCC	GGTAAAAGAT	ATGGACAGAA	ACGTGGTGAT		
				which which ded	
CAGAACCACG	GATTTGCGGT	GGATGAAGAC		CCAACCTGCG	
CGTGACCCAC	AAGTCGCTGT	TCGACGGGCA	CCCTGCAGGG	CATTCACCGT	
ACCGACAAAC	CGGGCGTTCA	GCTTCCAGGG	ACACCCGGGC	GGACGCCGGG	
CCCGACGATG	CGGCGCCGCT	GTTCGACCAC	TTTATCGAAT	TGATTAAGCA	
	Codo	n stop carA gene		start carB gene	
CTACCGTTCT	TCAGCAAAAT	AATCAGGAGC	CAACAAA	CCAAAACGTA	
		Hinfi			
CAGATATAAA	AAGCATCCTG	ATTCTGGCCG	GGGCCCGATT	cCA-4 primer GTTATCGGTC	
<i>~</i>			AUGOVANEI	WIIMIWUUUU	
AGGCGTGTGG	ATTTGACTAC	TCCGGCGCTC	AGGCGTGTAA	1000070000	
GAAGAACGGT	ACCCGGGTTA	TTCTGGTGAA	CTCTAACCCG	ACCGGTGCGC	
		. I VI GUI GAA		GCCACCATCA	
			← cCA-4 pi		
TGACCGACCC	GGAAATGGCC	GGTGCCACCT	ACATCGAGCC		
Figure (TI I III			JURIANIAVA		

Figure 6. The nucleotide sequence of 1499 bp DNA fragment of S.typhi.

Note : The nucleotide sequence of the *car*A gene of *S.typhi* had been submitted to and accepted by the GenBank Database with the accession number AF012246, 3-July-1997.