The correlation between hs C-reactive protein and left ventricular mass in obese women

Idrus Alwi*, S Harun*, Satrio Sukmoko†, Pradana Soewondo§, Sarwono Waspadi§, Sidartawan Soegondo§

Abstract

Plasma C-reactive protein (CRP) concentrations are increased in obese individuals. In this study, we examined the correlation between hsCRP and left ventricular mass (LV mass). Forty five healthy obese women and forty five healthy non obese women as the controls group were studied by echocardiography and hsCRP. There was no significant correlation between hsCRP and left ventricular mass in obese women (r=0.29, p 0.06). There was a significant correlation between hsCRP and body mass index (r= 0.46, p 0.002), and also hsCRP and visceral fat (r= 0.33, p 0.03). (Med J Indones 2006; 15:100-4)

Keywords: hs C-reactive protein, LV mass, obese women

Several studies showed that obesity influences cardiovascular morbidity and mortality.1-5 Clinical and necropsy studies on morbid obesity confirmed the the entity of obese cardiomyopathy, characterised by volume overload and hyperdynamism,6 frequently leading to congestive heart failure.7 Studies using echocardiography, cardiac catheterisation, and necropsy examination have shown relations between morbid obesity, structural alterations of the heart, and systolic function.7 These associations appear to be present even in cases of slight or mild obesity.8

Sukmoko et al.9 showed that left ventricular mass was higher in the obese patients compare to normal and there was a correlation between visceral fat and left ventricular mass. Body mass index is a strong determinant of left ventricular hypertrophy10 and that adipose tissue is a recognized site of cytokine production, in particular interleukin-6 and tumor necrosis factor α, therefore influencing hsCRP level.10 Obesity is also associated with markers of inflammation11 and prothrombotic risk.12,13

Palmieri et al.,14 in the Strong Heart Study reported a relation of left ventricular hypertrophy to inflammation and albuminuria in adults with type 2 diabetes. However, the correlation between hsCRP and left ventricular mass in obese patients has not been reported.

Our aim in this study was to determine the correlation between hsCRP and left ventricular mass in obese women.

METHODS

We studied 45 obese women and 45 non-obese control women. Obesity was defined as a body mass index

* Division of Cardiology Department of Internal Medicine, Faculty of Medicine University of Indonesia / Dr. Cipto Mangunkusumo General Hospital, Jakarta, Indonesia
† Department of Internal Medicine, Faculty of Medicine University of Indonesia / Dr. Cipto Mangunkusumo General Hospital, Jakarta, Indonesia
§ Division of Metabolic, Endocrinology and Diabetes, Department of Internal Medicine, Faculty of Medicine University of Indonesia / Dr. Cipto Mangunkusumo General Hospital, Jakarta, Indonesia
(BMI) of ≥ 25 kg/m², with clear evidence on physical examination of excessive subcutaneous adipose tissue.

Inclusion criteria: no previous history or clinical evidence of coronary artery disease, heart failure, or cardiac valve disease; normal ECG; no connective tissue disease; not suffering from any chronic or acute infection; not taking any drugs that could affect the heart and inflammation. Echocardiographic images had to be of sufficient quality to allow reproducible cross-sectional, M-mode and 2-D studies.

All subjects provided fully informed written consent for their participation in the study, and the protocol was approved by the ethics committee of our hospital.

All participants provided information on age, family history, personal habits (alcohol intake, tobacco consumption, type and level of physical exercise, drug ingestion, known pathological conditions) and the duration of the obesity.

Physical examination was conducted to exclude cardiac comorbidities. Height and weight were measured and the BMI was calculated as the weight (kg)/height² (m²). A 12 lead ECG was obtained. Haematological and biochemical variables were determined from fasting blood samples and included glucose, total cholesterol, triglycerides, high density lipoprotein cholesterol, urea and full blood count. hsCRP was measured using an enzyme-linked immunosorbent assay.

A cross sectional echocardiogram was obtained on all participants (Philips). Echocardiograms were undertaken in our echocardiographic laboratory following standard methods. They included cross sectional, M mode, and Doppler studies. Measurements of LV internal dimensions and wall thicknesses were obtained from two-dimensionally guided M-mode tracings or parasternal long-axis 2-D images according to the American Society of Echocardiography recommendations. Measurements of all variables were made by one observer who was blinded to the patients’ clinical details.

Statistical Analysis

Descriptive statistics were done on each of the variables to obtain the frequency distributions. Quantitative variables were described as mean (SD). Comparisons between the obese group and the normal weight group were analysed by t tests. Correlations between clinical variables and left ventricular mass were determined by Spearman correlation. Probability values of p < 0.05 were considered significant.

RESULTS

Baseline Characteristics

No significant differences in age and height between obese and normal groups. Obese subjects had higher weight, body mass index, waist, hip, waist hip ratio, visceral fat, systolic and diastolic blood pressure than normal subjects.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Obese</th>
<th>Normal</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>36.70 (6.92)</td>
<td>36.44 (6.27)</td>
<td>0.84</td>
</tr>
<tr>
<td>Height (cm)</td>
<td>154.01 (3.40)</td>
<td>155.33 (4.28)</td>
<td>0.11</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>77.00 (17.00)</td>
<td>53.49 (5.14)</td>
<td>0.00</td>
</tr>
<tr>
<td>Body mass index</td>
<td>32.07 (6.48)</td>
<td>22.15 (1.62)</td>
<td>0.00</td>
</tr>
<tr>
<td>(kg/m²)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Waist</td>
<td>93.82 (11.25)</td>
<td>71.88 (4.76)</td>
<td>0.00</td>
</tr>
<tr>
<td>Hip</td>
<td>109.08 (10.28)</td>
<td>94.64 (4.99)</td>
<td>0.00</td>
</tr>
<tr>
<td>Waist hip ratio</td>
<td>0.86 (0.05)</td>
<td>0.76 (0.05)</td>
<td>0.00</td>
</tr>
<tr>
<td>Visceral fat</td>
<td>362.29 (75.82)</td>
<td>276.20 (38.17)</td>
<td>0.00</td>
</tr>
<tr>
<td>Systolic blood</td>
<td>113.05 (10.77)</td>
<td>106.93 (9.03)</td>
<td>0.00</td>
</tr>
<tr>
<td>pressure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diastolic blood</td>
<td>70.64 (8.99)</td>
<td>65.4 (8.14)</td>
<td>0.00</td>
</tr>
<tr>
<td>pressure</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Values are mean (SD)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Obese</th>
<th>Normal</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>LVEDD</td>
<td>45.65 (4.50)</td>
<td>44.30 (7.14)</td>
<td>0.29</td>
</tr>
<tr>
<td>LVESD</td>
<td>26.70 (4.43)</td>
<td>26.64 (4.14)</td>
<td>0.94</td>
</tr>
<tr>
<td>IVS</td>
<td>1.01 (0.19)</td>
<td>0.79 (0.15)</td>
<td>0.00</td>
</tr>
<tr>
<td>LVPWD</td>
<td>0.96 (0.26)</td>
<td>0.69 (0.14)</td>
<td>0.00</td>
</tr>
<tr>
<td>LV mass</td>
<td>156.01 (44.45)</td>
<td>105.09 (27.42)</td>
<td>0.00</td>
</tr>
</tbody>
</table>

LVEDD, left ventricular end diastolic dimension; LVESD, left ventricular end systolic dimension; IVS, interventricular septum; LVPWD, left ventricular posterior wall; LV, left ventricular mass.

There were no significant differences in LVEDD and LVESD between obese and normal group. Obese subjects had higher intraventricular septum, left posterior wall and LV mass than normal subjects.

Correlates of hsCRP

In univariate analysis performed in all obese subjects, hsCRP was significantly correlated with body mass.
index \((r = 0.46, p = 0.002; \text{figure 1})\) and visceral fats \((r = 0.33, p = 0.03; \text{figure 2})\). The correlation between hsCRP and body mass index still significant even in non obese group. Also the correlation between hsCRP and visceral fats in non obese group. hsCRP was not related to LV mass \((r = 0.29, p = 0.06; \text{figure 3A})\), but there was a tendency correlate. In the normal group (non obese), the correlation between hsCRP and LV mass was not significant \((r = 0.17, p = 0.26; \text{figure 3B})\).

DISCUSSION

Sukmoko et al,\(^9\) showed changes in LV structure (LV mass) in obese women who have no other clinically cause of heart disease; left ventricular mass was higher in the obese women than non obese and there was a correlation between visceral fat and left ventricular mass. Wong et al,\(^{18}\) showed changes in the LV structure and function in healthy subjects with excess weight who have no other clinically appreciable cause of heart disease. These changes appear to
related to degree of obesity and some are even present with less severe obesity. These finding differ in a study reported by Iacobellis G, that showed obesity per se, in absence of glucose intolerance, hypertension and dyslipidemia, seem to be not associated with true LV hypertrophy, but severely uncomplicated obese subjects showed greater LV mass and indexed LV mass than normal weight subjects. Another study by Iacobellis et al, showed that insulin resistance in uncomplicated obesity, is associated with an increased LV mass and precocious changes of left ventricular geometry, whereas preserved insulin sensitivity is not associated with increased LV mass.

Inflammation, is associated with the development of atherosclerosis and consequent vascular events. LVH is associated with atherosclerosis. Our data showed that hsCRP is related to body mass index and visceral fat in obese women. The correlation still exist even in non obese women. The correlation between hsCRP and LV mass was not significant in the normal (non obese) women, but there was a tendency correlat in the obese women. Palmieri et al, reported that LVH was associated with higher hsCRP and albuminurina independent of cardiovascular risk factors, including BMI in adults with type 2 diabetes. The hypothesis is that LVH may interact with endothelial dysfunction, cytokines, insulin resistance, and hemodynamics to increased markers of inflammation and albuminuria. Experimental evidence suggests that streched myocardium is a site of cytokine production. In addition there is evidence in humans that LV hemodynamic overload is associated with increased circulating tumor necrosis factor-α. Hak et al, reported adiposity is strongly associated with CRP in healthy middle aged women and BMI accounted for the relationship between CRP and other variables of the insulin resistance syndrome.

In this study adiposity (BMI and visceral fat) also correlate with hsCRP, but LV mass was not correlate with hsCRP. This result may be influence by obesity per se not LV mass. The discrepancy results from study by Palmieri et al, may be because the populations was difference (diabetes mellitus vs obese). Another reason was the sample in this study was small.

CONCLUSIONS

There was a tendency correlation between hsCRP and LV mass in obese women. This correlations between hsCRP and body mass index/visceral fat were significant. This correlation may be influence by insulin resistance.

REFERENCES

10. de Simone G, Devereux RB, Kimball TR, Mureddu GF, Roman MJ, Contaldo F, Daniels SR: Interaction between body size and cardiac workload: influence on left ventricular mass during body growth and adulthood. Hypertension 1998; 31:1077–82

