Expression of hypoxia inducible factor-1α (HIF-1α) gene and apoptosis in the heart induced by systemic hypoxia

Siufui Hendrawan,1 Sri W.A. Jusman2, Frans Ferdinal1, Ani R. Prijanti2, Septelia I. Wanandi2, Mohamad Sadikin2

1 Department of Molecular Biology and Biochemistry, Faculty of Medicine, Tarumanegara University, Jakarta, Indonesia
2 Department of Molecular Biology and Biochemistry, Faculty of Medicine, University of Indonesia, Jakarta, Indonesia

Abstract

Aim This study explored the expression of HIF-1α in hypoxic cardiac muscle in mice, and observed the evidence of apoptosis in hypoxia induced cardiomyocyte.

Methods Male Sprague-Dawley rats, were randomized into 7 groups (n= 4 per group): control normoxia group that was exposed to atmospheric oxygen and hypoxia groups that were housed in hypoxic chambers (O2 level 8%) for 1, 3, 7, 14, 21, and 28 days respectively. Animals were sacrificed, hearts were rapidly excised, total RNA was extracted with an mRNA isolation kit and the expression of HIF-1α mRNA was then detected by real-time RT-PCR. Apoptosis was assessed by TUNEL method.

Results For rat in hypoxia group, the expression of HIF-1α mRNA in cardiac myocytes was clearly up-regulated compared to the control normoxia group. Further, HIF-1α expression level elevated gradually and reached a peak at 21 days of hypoxia. No cell labeled by the TUNEL method was detected in the control group. Compared with the control group, the apoptotic index was significantly increased in the hypoxia group (P < 0.05). There was no significant correlation between the elevation of HIF-1α mRNA and the elevation of apoptotic index.

Conclusion Systemic chronic hypoxia caused the elevation of HIF-1α mRNA and apoptosis in cardiac myocytes. (Med J Indones 2009; 18: 97-101)

Key words: TUNEL, RT-PCR, mRNA, apoptotic index.

The mammalian heart is an obligate aerobic organ. A constant supply of oxygen is indispensable for cardiac viability and function. Myocardial hypoxia occurs as a consequence of a mismatch in the relationship between myocardial mass, myocardial oxygen demand, and oxygen delivery.1 Oxygen serves as the terminal electron acceptor in the electron transport chain, and in the absence of sufficient oxygen, electron transport ceases and cardiac energy demands are not met. The development of myocardial hypertrophy initially represents an important adaptive mechanism to cardiac stressors that alter oxygen...
availability and cardiac energy metabolism. A deficiency in high-energy phosphate (ATP) stores is responsible for the transition from adaptive hypertrophy to maladaptive heart failure.\(^1\,^2\)

It is crucial for a living organism to be able to detect and respond to hypoxia. Systemic hypoxia is sensed by central and arterial chemoreceptors. These chemoreceptors induce acute systemic cardiorespiratory responses to hypoxia, such as increased respiratory rate and elevation in cardiac pulse rate.\(^3\)

In addition to the acute responses, chronic adaptations occur at molecular and cellular level. Oxygen availability changes gene expression in cells, including regulation of gene transcription by hypoxia-inducible factor 1 (HIF-1). Hypoxia-inducible factor-1 is a transcriptional activator that functions as a master regulator for cellular oxygen homeostasis. It consists of two constitutively produced subunits: HIF-1α and HIF-1β. Under normoxic conditions, HIF-1α is rapidly degraded, whereas under hypoxia, HIF-1α becomes stabilized, translocates to the nucleus, dimerizes with HIF-1β, and binds hypoxia response element (HRE) to induce certain gene expression. A broad range of HIF-1 activated genes facilitates adaptation to low oxygen conditions, including those that are involved in angiogenesis, erythropoiesis, glucose metabolism, and apoptosis.\(^4,^5\)

Apoptosis can be induced in response to hypoxia. The severity of hypoxia determines whether cells become apoptotic or adapt to hypoxia and survive. In addition to energy deprivation, radical formation, in particular reactive oxygen species (ROS) generation contributes to hypoxia-induced apoptosis. Hypoxia inducible factor-1 can initiate apoptosis by inducing pro-apoptotic protein, such as BNIP3, and can cause stabilization of p53. The p53 can induce the Bax and Bak proteins, which regulate the release of cytochrome-c from mitochondria, thereby initiating the cascade that leads to apoptosis. Cytochrome-c binds to the apoptotic protease activating factor-1 (Apaf-1) and activates caspase-9, which in turn cleaves caspase-3 and 6, and leads to cell death.\(^6\)

It has generally been believed that apoptosis does not occur in terminally differentiated adult cells such as cardiac myocytes. The aims of this study were to induce hypoxia in an animal model to show that apoptosis could be induced in cardiomyocytes by hypoxia and to observe whether there was any correlation between the expression level of HIF-1α gene and apoptosis during hypoxia.

METHODS

Animals

A total sample of 28 male rats, (10-12 weeks old, weight: 200-250 g), were used in this study. The rats were randomized into 7 groups (\(n=4\) per group) i.e.: control normoxia group that was exposed to atmospheric oxygen and hypoxia groups that were housed in hypoxic chambers (\(O_2\) level 8%) for 1, 3, 7, 14, 21, and 28 days respectively. Control rats were raised in atmospheric oxygen for 28 days before being sacrificed. All animals had free access to water and standard rat chow. Water and food consumption were assessed every 2 days.

Study design

Experimental, *in vivo*, completely randomized design was used in this study.

The design of the cages that were used for the hypoxia group in this study prevented exposure of the animals to room air during the entire stay, feeding, cleaning operations, and sacrifice. The cages were composed of two types of chambers. The bigger chamber (each has a capacity for six animals) was flushed with 8% \(O_2\) and 92% \(N_2\) containing gas. The \(O_2\) tension inside the chamber was monitored by an \(O_2\) meter. When a cage opening was required for regular cleaning, replenishment of food and water, or sacrificing an animal, the compensation (smaller) chamber was first flushed with hypoxic gas before the animal was then transferred into it.

Each rat was weighed and then anesthetized with ether. After induction of general anesthesia, the chest was opened through median sternotomy. The heart was rapidly excised and weighed. The ventricle was cut horizontally into two slices. The half basal portion was fixed in 10% phosphate buffered formaldehyde (formalin). Formaldehyde-fixed tissues were processed for apoptosis studies. The apical remaining portion was kept frozen at -80°C for further total RNA isolation.

Real-time RT PCR

Total RNA was isolated using Aqua Pure RNA Isolation Kit according to the manufacturer’s instruction (Bio-RAD, USA). The RNA concentrations were determined by UV spectrophotometer, and real-time RT-PCR were conducted using 2 \(\mu\)L of total RNA (concentration 12-48 \(\mu\)g/ml) for each sample with iScript One-Step RT-PCR Kit with SYBR Green (Bio-RAD, USA). Primers that were used to detect HIF-1α were designed based
Determination of Apoptosis

Parafin-embedded myocardial sections were mounted on silanized slides. Immunohistochemical procedures for detecting apoptotic cardiomyocytes were performed by TUNEL (terminal deoxynucleotidyl transferase-mediated deoxy-UTP nick end labeling) method. This method involves the addition of deoxyuridine triphosphate (dUTP) labeled with fluorescein to the 3’-OH ends of DNA by the catalytic action of terminal deoxynucleotidyl transferase (TdT). In situ cell death detection kit, POD was used according to the manufacturer’s (Roche, USA) instructions. The apoptotic index was determined by counting a total of at least 1000 nuclei that were subdivided in ± 10 randomly chosen fields at 400x magnification.

Statistical Analysis

The reported values were means ± SD. SPSS 16.0 was used in this study. The differences among groups were tested by Mann Whitney-U Test. The correlation between continuous variables was calculated by the method of Pearson. \(P < 0.05 \) was considered statistically significant.

RESULTS

Real-time RT PCR

The cDNA of HIF-1α was synthesized by reverse transcription of total RNA from ventricle tissue, using β-actin as an internal control. The result of the current study showed that the expression levels of HIF-1α in hypoxia groups were clearly higher than that of the control group. The expression level elevated gradually and reached a peak at 21 days of hypoxia, that resulted in more than 19-fold increase compared to normoxia group (Figure 1).
Determination of Apoptosis

To examine the effect of chronic hypoxia on apoptosis we induced hypoxia in animal models using hypoxic-chambers. Hypoxia induced morphological alterations were typical for apoptotic cell death, as determined by TUNEL assays. Evidence of apoptosis in myocytes by nick end-labeling studies was only observed in the hypoxia groups but none in the normoxia group. Compared with the control group, the apoptotic index was significantly increased in hypoxia groups (table 1).

However, the elevation of HIF-1α mRNA during hypoxia was only weakly and insignificantly correlated with the apoptotic index (R= 0.464, P = 0.294).

DISCUSSION

In experimental studies on the effects of hypoxia, several variables need to be taken into consideration, including the animal species, age at entry into the protocol, the method to produce hypoxia, intensity and duration of hypoxia, and precise nature of the experimental design to evaluate the myocardial response.

The response of myocardial cells to chronic hypoxia may differ from that to acute hypoxia and the in vivo response may be different from the in vitro response. To assess the effect of chronic hypoxia on cardiomyocytes, we used an animal model to study the expression of HIF-1α gene and apoptosis at different levels of hypoxia. In this study the rats were placed in a hypoxic chamber, and oxygen level was maintained at 8%.

A recent research found that HIF-1α was a sensitive marker for hypoxia. Hypoxia and several other stimuli induced HIF-1α signaling cascade. In turn, HIF-1α would transcriptionally activate multiple genes, which regulated metabolic cardio protective and cross-adaptive mechanisms. In this study, the real-time PCR result showed that the expression level of HIF-1α were up-regulated at the mRNA level during hypoxia. The expression of HIF-1α mRNA in cardiac muscle was clearly up-regulated after 1 day exposure to hypoxia (O₂ level 8%) and reached a peak at 21 days, and then decreased after 28 days.

Our results are consistent with those reported by Ning et al. in which short-term hypoxia elevated HIF-1α mRNA by promoting transcription. However, HIF-1α expressions were suppressed after a more severe hypoxia occurred, accompanied by ATP depletion and extensive apoptosis.

Terminally differentiated cells such as myocardial cells are not believed to undergo apoptosis under natural conditions. However, recent evidence suggests that apoptosis can be induced in cardiomyocytes by hypoxia, ischemia, and other insults.

This study showed that apoptotic index was significantly increased compared with control group. There was evidence of gradually increased apoptosis with severity of hypoxia, and the mean apoptotic index in each group was more than 1%. These results oppose those reported by Bitar et al. that studied the apoptosis in the chronically hypoxic rat hearts, but is in line with the result of Narula et al.

In single cells, the process of apoptosis runs its course in a short time (on the order of hours). For this reason, identifying and quantifying apoptosis are difficult. Since apoptotic cells are present only transiently, it may be more appropriate to calculate the total number of cells lost by integrating the frequency of the event over time. With such approach, and assuming that a cell undergoing apoptosis is detectable for 24 hours, the percent loss of cells per day can be estimated.

A higher percentage of apoptotic cardiomyocytes in the hearts studied had been reported by Narula et al. It may be related to the variability in the distribution of apoptotic cells, or to the use of myocardial samples from

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Normoxia</th>
<th>Hypoxia 1 day</th>
<th>Hypoxia 3 day</th>
<th>Hypoxia 7 days</th>
<th>Hypoxia 14 days</th>
<th>Hypoxia 21 days</th>
<th>Hypoxia 28 days</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apoptotic Index (in percent)</td>
<td>0</td>
<td>1.1 ± 0.4*</td>
<td>1.6 ± 0.5*</td>
<td>2.0 ± 0.6*</td>
<td>2.6 ± 0.7*</td>
<td>3.2 ± 0.7*</td>
<td>4.1 ± 0.5*</td>
</tr>
</tbody>
</table>

1 number of apoptotic myocytes/total number of myocytes x 100 (in percent), Values given were mean ± SD

*significantly different from control (P< 0.05, Mann-Whitney Test)
different regions of the myocardium. Apoptosis usually occurred in groups of cells, and the severities varied from extensive to mild to absent in different regions of the myocardium. Furthermore, it may also be due to the variability in the sensitivity of the staining procedures. The accessibility of enzymatic reactions to DNA breaks is reduced by the nuclear protein environment and impaired by cell fixation. With adequate pretreatment, reliable TUNEL can be obtained. The microwave pretreatment provided the best TUNEL sensitivity without notable loss of specificity.

In addition to its presence in myocytes, apoptosis can also be observed in vascular smooth-muscle cells of an intra myocardial arteriole as well as in rare interstitial cells. Consistent with Narula et al. study, we also found that there was no myocyte that was labeled by the TUNEL method in the control group. Narula et al. study also showed that cardiomyocytes’ apoptosis was induced by cytochrome-c release and cleavage of caspase-3 (intrinsic pathway).

Further, our study showed that there was no significant correlation between the elevation of HIF-1α expression and the apoptotic index. After 28 days of hypoxia, the expression level of HIF-1α was decreased, in contrast to the apoptotic index that continued to increase. Several reports demonstrated that under more severe conditions of hypoxia, p53 inhibited HIF-1 activity by targeting HIF-1α for degradation. With prolonged hypoxia, p53 started to accumulate and competed with HIF-1α for binding to p300. It seemed that, under prolonged hypoxia, cardiomyocytes apoptosis was more likely induced by the role of p53 rather than HIF-1α.

In conclusion, systemic chronic hypoxia caused elevation of HIF-1α mRNA and apoptosis in cardiac myocytes.

Acknowledgments

We thank Tarumanagara University for funding this study, and to The Department of Molecular Biology and Biochemistry, University of Indonesia, Jakarta, Indonesia where this study was held.

References