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      Background

      
				In prostate cancer (PCa) diagnosis, many developed machine learning
				(ML) models using ultrasound images show good accuracy. This study aimed to analyze
				the accuracy of neural network ML models in PCa diagnosis using ultrasound images.		  


       


      Methods

      
				The protocol was registered with PROSPERO registration number
				CRD42021277309. Three reviewers independently conducted a literature search in 5
				online databases (PubMed, EBSCO, Proquest, ScienceDirect, and Scopus). We included
				all cohort, case-control, and cross-sectional studies in English, that used neural
				networks ML models for PCa diagnosis in humans. Conference/review articles and
				studies with combination examination with magnetic resonance imaging or had no
				diagnostic parameters were excluded.			


       


      Results

      
				Of 391 titles and abstracts screened, 9 articles relevant to the study were
				included. Risk of bias analysis was conducted using the QUADAS-2 tool. Of the 9
				articles, 5 used artificial neural networks, 1 used deep learning, 1 used recurrent neural
				networks, and 2 used convolutional neural networks. The included articles showed
				a varied area under the curve (AUC) of 0.76–0.98. Factors affecting the accuracy of
				artificial intelligence (AI) were the AI model, mode and type of transrectal sonography,
				Gleason grading, and prostate-specific antigen level.			


       


      Conclusions

      
				The accuracy of neural network ML models in PCa diagnosis using
				ultrasound images was relatively high, with an AUC value above 0.7. Thus, this modality
				is promising for PCa diagnosis that can provide instant information for further workup
				and help doctors decide whether to perform a prostate biopsy.			
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				Prostate cancer (PCa) is the third most common
				cancer globally and the second most common in men.1
				It significantly affects male health, and early detection
				facilitates curative treatment and reduces disease
				morbidity and mortality.2,3


			
				Ultrasonography has a potential for PCa
				imaging because it is cost-effective, practical, and
				widely available.4 However, standard transrectal
				ultrasound (TRUS) alone is not reliable due to its
				low sensitivity and specificity in detecting PCa.5 The
				current gold standard for PCa detection is a prostate
				biopsy performed under TRUS guidance.2,3,6,7 While
				ultrasonography is widely available, TRUS can be less
				comfortable for patients than the transabdominal
				approach. The best instruments currently available
				yield inaccurate results. More accurate diagnostic
				instruments are required to effectively detect
				disorders. Technological advancements, such as
				artificial intelligence (AI), may help overcome these
				challenges.8,9


			
				AI is a revolutionary technology in the healthcare
				field that is gaining interest. Neural networks, such as
				artificial neural networks (ANNs), convolutional neural
				networks (CNNs), and recurrent neural networks
				(RNNs), are machine learning (ML) models that mimic
				human biological neurons. For PCa, AI has been shown
				to aid in standardized pathological grading to guide
				cancer stratification and treatment. Nitta et al10 and
				Djavan et al11 applied ML models to predict PCa based
				on prostate-specific antigen (PSA) concentrations.
				ML tended to be superior to conventional methods,
				with a region-wise area under the receiver operating
				characteristic curve (ROC-AUC) value ranging from
				0.63 to 0.91.


			
				The accuracy of ML based on data from
				ultrasonography as the primary modality has been
				debated. Thus, this review aimed to analyze the
				accuracy of neural networks trained on ultrasound
				images for PCa diagnosis.						



			 

      
        METHODS

      


			
			 

			
				Protocol registration

			
				The protocol for this systematic review was
				registered with PROSPERO registration number
				CRD42021277309.


				 

				
					Search strategy

				
				Three reviewers (RCS, CA, and FH) independently
				conducted a literature search of five online databases
				on January 13, 2023. The databases were PubMed,
				EBSCO, ProQuest, ScienceDirect, and Scopus. The
				following keywords with various combinations were
				used: “Prostate Cancer,” “Machine Learning OR Neural
				Network,” “Diagnosis,” and “Ultrasonography” (Figure
				1). The reference lists of the articles retrieved from the
				literature search were also reviewed to identify other
				relevant studies.


				 

				
					Study selection and data extraction

				
				All articles that used ultrasound images to
				demonstrate the application of ML to the diagnosis of
				PCa were included. The literature search was limited to
				publications in English without regard to the publication
				date. A study was considered significant if it met the
				inclusion criteria, including using human participants,
				neural networks, ML models, and prostate biopsy as
				the criterion for diagnosis. Cohort, case-control, and
				cross-sectional studies were included. Conference or
				review articles and studies that involved a combined
				examination with magnetic resonance imaging (MRI)
				or had no diagnostic parameters were excluded. Three
				reviewers (RCS, CA, and FH) individually reviewed
				the titles and abstracts of the selected studies.
				Disagreements were resolved through discussions
				with senior reviewers until a consensus was reached.
				All authors agreed with the final list of papers selected
				for extraction. The Preferred Reporting Items for
				Systematic Reviews and Meta-Analyses flow diagram
				was used to assist in selecting the articles.


			
				The data extracted from the included articles were
				tabulated to summarize the outcomes. The data collection
				points included the number of samples and participants,
				ultrasound modes, ML methods, system specifications,
				software tools, programming languages, ML input data,
				ML outcomes, and diagnostic performance. The primary
				outcome was the accuracy of neural network ML models
				for PCa diagnosis. Additionally, the neural network
				models were compared with other ML models; we
				compared their available diagnostic performance data,
				including sensitivity, specificity, positive predictive value
				(PPV), negative predictive value (NPV), and ROC-AUC. The
				receiver operating characteristic is a graph showing the
				performance of a classification model at all classification
				thresholds to determine its accuracy. The area under
				the curve (AUC) is the probability that a classifier ranks
				a randomly selected positive example more highly than
				a randomly selected negative example. Based on the
				test, an AUC of 0.5 indicates the inability to distinguish
				between patients with and without disease or condition,
				0.7−0.8 is acceptable, 0.8−0.9 is considered excellent, and
				>0.9 is outstanding.


				 

				
					Risk of bias assessment

				
				The methodological quality of the research was
				independently evaluated by three reviewers (RCS,
				CA, and FH) using the QUADAS-2 tool in the Review
				Manager software version 5.4 (Cochrane, United
				Kingdom) for Mac. The reviewers were not blinded to
				the identities of the authors of the articles, journals,
				and publishers. Based on the questions in the
				QUADAS-2 tool, the risks of bias were categorized as
				high, unclear, and low.						



       

      
        RESULTS

      


			
			 

			
				Of the 391 retrieved articles, only 9 met the
				inclusion criteria (Figure 1). The quality assessment
				of the included articles is shown in Table 1 using the
				QUADAS-2 tool. Several articles included in the analysis
				had an unclear or high risk of bias. Unclear risk of bias
				was common for the index test parameters due to
				the unclear threshold of the index test. Meanwhile,
				a high risk of bias was also common because the
				interpretation was limited to standard results in
				several articles.12–14
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							Figure 1.
						
						
							PRISMA flow diagram
							for the current study (a total
							of 391 articles obtained).
							MRI=magnetic resonance imaging;
							PRISMA=Preferred Reporting Items
							for Systematic Reviews and Meta-
							Analyses						
					

				

				 

				


				
				 

				
					
						
							Table 1.
						
						
						Risk of bias assessment using the QUADAS-2 tool
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				The characteristics of each study are presented
				in Table 2.12–20 Five studies used an ANN, one used
				deep learning (DL), one used an RNN, and two used
				a CNN. Nine of the included studies had a cross-sectional
				design. All studies examined adult males
				with an unknown age range owing to unclear data.
				The sample sizes ranged from 48 to 1,151 patients;
				however, the studies by Ronco and Fernandez12
				and Akatsuka et al13 only provided the number of
				cases. Five studies used TRUS data only for the input
				parameters, whereas the others used a combination
				of input data from clinical findings. All studies showed
				various accuracy analysis parameters, including
				AUC, PPV, NPV, sensitivity, and specificity (Table 2).
				However, Loch et al14 only used percentages. The
				performance results are presented in Table 2. Due to
				the varied parameters, a quantitative analysis could
				not be performed. Most of the studies used the AUC
				as an accuracy parameter. The AUC values of all the
				studies were greater than 0.7, ranging from 0.75 to
				0.98.						


				
				 

				
					
						
							Table 2.
						
						
							Characteristics and performance result of included studies
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        DISCUSSION

      


			
			 

			
				Based on the included studies, the overall
				accuracy of ML showed promising results. The AUC
				values of nine studies were greater than 0.7, ranging
				from 0.75 to 0.98. Wildeboer et al18 assessed a
				potential DL model based on TRUS B-mode US, shear-wave
				elastography (SWE), and dynamic contrast-enhanced
				ultrasound (DCE-US). The multiparametric
				classifier showed an AUC of 0.90 compared with 0.75
				for the best-performing individual parameters for PCa
				and Gleason scores >3+4 significant PCa. This study
				revealed that combinations of the available modes
				were favored over a single mode. Lee et al15 evaluated
				the accuracies of multiple logistic regression, ANN, and
				support vector machine (SVM) models in predicting
				the prostate biopsy outcomes of 684 patients (214
				were confirmed to have PCa). The models were
				developed using the following input data: age, digital
				rectal examination (DRE) findings, PSA parameters,
				and TRUS findings. This study showed that image-based
				clinical decision support systems (ANN and
				SVM) were more accurate than multiple logistic
				regression models. They evaluated the diagnostic
				performance of the ANN model with and without
				TRUS data. The ANN model used the primary input
				data of age, PSA levels, and DRE findings. However,
				with additional TRUS data, the ANN model showed
				better accuracy and a higher AUC value than without
				TRUS data. Azizi et al17 proposed the temporal
				modeling of temporal enhanced ultrasound (TeUS)
				using an RNN to improve cancer detection accuracy.
				The TeUS data were acquired from 157 patients during
				fusion prostate biopsy. The model achieved an AUC
				value of 0.96. Hassan et al19 demonstrated a higher
				accuracy (0.99) with a CNN (VGG-16) than with other
				algorithms (Gradient Boosting, SVM, and Random
				Forest). Akatsuka et al13 reported an AUC of 0.835
				for CNN combined with an SVM built on clinical data
				and TRUS images. This was higher than the AUC for
				the SVM based on only clinical data. A recent study
				by Lorusso et al20 demonstrated increasing sensitivity
				and NPV of the ANN method using TRUS images for
				higher grades of PCa.


			
				Several factors influence the accuracies of models,
				including the AI model, TRUS modes, amount of
				input data, Gleason grading, and PSA concentrations.
				Based on the analysis of each AI model (Table 4), two
				included studies highlighted the superior diagnostic
				performance of the neural network model to those
				of other models.13,20 ANN and CNN outperformed the
				other neural network models in terms of diagnostic
				performance.14,15,19 TRUS modes are substantially
				related to the accuracy, with DCE-US/SWE/TeUS
				improving the visualization and distinction of prostate
				tissues over the B-mode. The amount of input data is
				also important for reliable predictions by ANN models.
				More complicated data will result in a more accurate
				diagnosis.21,22 According to Lee et al,16 Wildeboer et al,18
				and Akatsuka et al,13 adding more complicated data
				increases the AUC, corresponding to better accuracy.
				Wildeboer et al18 discovered a significant association
				between Gleason scores of >3+4 and accuracy of DL,
				but not in Gleason scores of 3+3 or 3+4. This could be
				due to a bias in patient selection; tumors with scores
				of 3+3 were disproportionately large for the doctors
				and were excluded from the study. According to Lee
				et al,16 the AUC of ANN models was consistently higher
				for PSA concentrations greater than 10 ng/ml. This
				could be related to the serum PSA concentrations,
				corresponding to cancer extent and histological grade.23
				As a result, TRUS alone is insufficient for detecting PCa.
				However, TRUS data and its combinations with other
				pertinent input data can be used for ML. Despite its
				benefits, neural networks utilizing ultrasonic images
				have drawbacks that can be improved, such as the
				need for a large dataset for training.24 Furthermore,
				the quality of scans, sample collection procedures,
				and human interpretation errors differ with datasets,
				making it impossible to create a gold standard.24,25


			
				Reading ultrasound images requires several years
				of experience and training. ML has been introduced
				to medical imaging to address these constraints,
				speed up ultrasound picture analysis, and generate
				objective disease classification.21 ML applications
				have advanced rapidly, thus reducing the time
				required to interpret a large amount of data and draw
				conclusions.26 ML is an AI subfield in which computer
				algorithms learn connections between data instances
				for predictions.22 As previously noted, ultrasound
				images are analyzed using various techniques
				such as classification, regression, registration, and
				segmentation. However, neural network techniques
				have been found to outperform other classifiers.23
				Neural networks function similarly to the human brain
				and can solve the limitations of regular ML. They can
				combine additional variables and produce outcomes
				for more complex scenarios.23 A neural network can
				create input data from many variables to classify
				patients with PCa.


			
				As shown in Table 3, the algorithms used to build
				ML have several advantages and disadvantages.
				Regardless of their differences, CNNs and ANNs are
				important in the ML field.26,27 ANNs comprise multiple
				layers of interconnected artificial neurons activated
				by activation functions. Like traditional machine
				algorithms, the neural network learns specific values
				during training.28 Other prominent ML models, such as
				SVM, work by adding a higher dimension to the input
				to differentiate the classes.29 To assess whether the
				data meet the criteria, the decision tree (DT) employs
				several decision logics that act similarly to flowcharts.
				When numerous DTs are joined, a Random Forest
				method is used to reduce the overfitting tendency of
				the DT.30


				
				 

				
					
						
							Table 3.
						
						
							Comparison of advantages and disadvantages of several ML models
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				The ML field is advancing rapidly, with
				corresponding hardware and software advancements.
				DL has advanced significantly in recent years, owing
				to data overflow and support from graphic processing
				unit hardware acceleration. Various DL libraries,
				including PyTorch, Keras, TensorFlow, Theano, and
				Caffe, are currently available. Neural network fusion
				was recently developed to increase accuracy.31
				The utilization of ML with TRUS data could have a
				potential role as a diagnostic modality, especially
				when MRI is unavailable. Based on current guidelines,
				T2-weighted imaging remains the most useful method
				for local MRI.32 However, a meta-analysis by de Rooij
				et al33 showed that MRI had high specificity but poor
				sensitivity for local PCa staging. Its sensitivities and
				specificities for extracapsular extension, seminal
				vesicle invasion, and overall stage T3 detection were
				0.57 (95% confidence interval [CI] = 0.49–0.64) and
				0.91 (95% CI = 0.88–0.93), 0.58 (95% CI = 0.47–0.68)
				and 0.96 (95% CI = 0.95–0.97), and 0.61 (95% CI = 0.54–0.67) and 0.88 (95% CI = 0.85–0.91), respectively. Our
				findings showed that ML based on TRUS and other
				relevant data can improve diagnostic performance.
				Thus, it will become more affordable and easier to
				diagnose PCa without MRI. Furthermore, ML based on
				TRUS data can be implemented in combination with
				MRI for prostate biopsy and intraoperative mapping
				before robotic surgery. This will allow the surgeon to
				visualize suspected lesions on the instrument display
				during the procedure.


			
				To date, no study has analyzed the cost-effectiveness
				of ML for PCa diagnosis. For severe
				cases of PCa, AI is used to reduce the processing time
				and facilitate early detection, resulting in a superior
				prognosis. Additionally, reducing the quantity of
				human labor enables the service to be provided at a
				reduced price compared with multiparametric MRI.34
				A systematic review by Khanna et al35 reported that
				AI models demonstrated significant cost savings for
				medical diagnosis and treatment, and this is applicable
				to PCa diagnosis.


			
				The present study had some limitations. The major
				limitations were the low to moderate quality of the
				included studies and the small sample of articles. The
				literature search was restricted to studies written in
				English, and some articles in other languages might
				have been missed. None of the studies used the same
				output parameters to generate a quantitative analysis.
				Additionally, most studies did not blind the diagnosis
				when testing the ML models, which might have
				resulted in bias. The approximate AUC and sensitivity
				values of the ML models in this study were not high
				and might have led to missed PCa cases among the
				patients. Further advancements in ML will continue to
				improve diagnostic accuracy.


			
				In conclusion, the accuracy of the neural network
				models for PCa diagnosis using ultrasound images
				was relatively high, with AUCs greater than 0.7. Neural
				network models are promising for PCa diagnosis and
				can provide instant information for further workup with
				relatively high accuracy. Image-based ML models can help
				doctors decide on proceeding with or deferring a prostate
				biopsy. Further development of AI will be beneficial for
				diagnosis, treatment evaluation, and predicting patient
				prognosis. Future studies should investigate and compare
				the diagnostic performance of neural networks based on
				ultrasound images and MRI for PCa.									


       

       


			
				A preprint of this manuscript has previously been published (https://www.medrxiv.org/content/10.1101/2022.02.03.22270377v1).			
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