Diagnostic value and clinical significance of high-resolution ultrasonography compared to magnetic resonance imaging in diagnosing temporomandibular joint dislocation: a systematic review

Thariqah Salamah, Glancius Nironsta Harefa

ABSTRACT

BACKGROUND Temporomandibular joint (TMJ) dislocation is uncommon, yet it is associated with a significant negative effect on the patient's quality of life. Magnetic resonance imaging (MRI), a gold standard for diagnosing TMJ dislocation, is expensive, time-consuming, and cannot be performed on patients with pacemakers and metallic prostheses. On the other hand, high-resolution ultrasonography (HRUS) has low cost, high accessibility, and is less time-consuming. This study aimed to compare the accuracy and reliability of HRUS to MRI in diagnosing TMJ dislocation.

METHODS A comprehensive literature search was conducted using PubMed, Cochrane Library, ScienceDirect, and EBSCOhost databases. Keywords such as temporomandibular joint dislocation, temporomandibular displacement, MRI, and ultrasonography were utilized for the search. The articles obtained were then selected based on the inclusion and exclusion criteria, and the quality assessment was conducted using the QUADAS-2 tool.

RESULTS 5 studies were included in this systematic review. The critical appraisal results showed sensitivity ranging from 74.3–93.7%, specificity from 84.2–100%, positive predictive value from 68.2–100%, negative predictive value from 64.0–98.3%, and accuracy from 77.7–91.7% of HRUS compared to MRI.

CONCLUSIONS HRUS is a reliable method for diagnosing TMJ dislocation. However, MRI is still necessary in selected and more advanced cases.

KEYWORDS magnetic resonance imaging, temporomandibular joint, ultrasonography
availability in hospital facilities, and restrictions on patients with pacemakers, metallic prostheses, or claustrophobia.1,5,6

As an alternative, ultrasonography (USG), particularly high-resolution ultrasonography (HRUS), has emerged as a promising diagnostic method for TMJ dislocation in recent years. HRUS is inexpensive, provides quick examinations with real-time results, and is widely available in most hospital facilities. Recent studies have shown outstanding results in diagnosing TMJ disorders using HRUS.7–10 This study aimed to compare the accuracy and reliability of HRUS to MRI in diagnosing TMJ dislocation.

METHODS

Search strategy

A systematic literature search was conducted using electronic databases, including PubMed, Cochrane Library, ScienceDirect, and EBSCOhost. Keywords such as temporomandibular joint dislocation, temporomandibular joint displacement, MRI, and ultrasonography were used in the search. MeSH keywords were also included in the literature search (Table 1). Limitations were applied to the literature search, which included articles published within the last decade (2010–2022). The reference lists of the included articles were screened to identify relevant studies. This study adhered to the guidelines outlined in the Preferred Reporting Items for Systematic Reviews and Meta-Analyses checklist.

Study selection and data collection

The inclusion criteria were as follows: (1) study population of patients suspected of having TMJ dislocation, (2) diagnosis using both MRI and HRUS, and (3) data on the sensitivity and specificity of MRI and HRUS. Case reports, reviews, conference abstracts, non-English articles, and animal studies were excluded. Articles were selected based on the inclusion and exclusion criteria. Data extracted from all studies included the characteristics of participants (age and sex), sample size, study design, gold standard diagnostic tool, types of USG, final study conclusion (outcome), and study limitations.

Quality assessment

Both authors independently assessed the study quality using the Quality Assessment of Diagnostic Accuracy Studies-2 tool. It consisted of patient selection, index tests, reference standards, patient flow throughout the study, and the timing of the index tests and reference standards. Each domain was evaluated for the risk of bias and applicability.

RESULTS

Of the 437,989 prospectively relevant articles included in the initial search, 436,759 were excluded, leaving 1,230 articles remaining. After an initial review of the titles and abstracts, a full-text analysis was conducted on 12 articles. Ultimately, five studies were selected for qualitative synthesis and critical appraisal (Figure 1).

Characteristics of the studies

All articles used MRI as the reference standard for diagnosing TMJ disorders and compared it to HRUS. HRUS (5–17 MHz) with a linear array transducer was employed in all studies. Talmaceanu et al11 conducted two types of sonographic evaluations using an 8–40

Table 1. Search strategy

<table>
<thead>
<tr>
<th>Databases</th>
<th>Search strategy</th>
<th>Hits</th>
<th>Selected</th>
</tr>
</thead>
<tbody>
<tr>
<td>PubMed</td>
<td>(((temporomandibular joint dislocation [Title/Abstract]) OR (temporomandibular joint dislocation [MeSH Terms])) OR (temporomandibular joint displacement [Title/Abstract]) OR (temporomandibular joint displacement [MeSH Terms])) AND (temporomandibular joint dislocation [MeSH Terms])) AND (((mri[Title/Abstract])) OR (magnetic resonance imaging[Title/Abstract])) OR (ultrasonography[Title/Abstract])) OR (usg[Title/Abstract]))</td>
<td>774</td>
<td>3</td>
</tr>
<tr>
<td>ScienceDirect</td>
<td>("temporomandibular joint dislocation" OR "temporomandibular joint displacement") AND ("magnetic resonance imaging" OR "mri" OR "ultrasonography" OR "usg")</td>
<td>177</td>
<td>2</td>
</tr>
<tr>
<td>Cochrane Library</td>
<td>(temporomandibular joint dislocation):ti,ab,kw OR (temporomandibular joint displacement):ti,ab,kw OR (temporomandibular joint dislocation):ti,ab,kw OR (temporomandibular joint displacement):ti,ab,kw OR (temporomandibular joint dislocation):ti,ab,kw</td>
<td>142</td>
<td>0</td>
</tr>
<tr>
<td>EBSCOhost</td>
<td>("temporomandibular joint dislocation" OR "temporomandibular joint displacement") AND ("magnetic resonance imaging" OR "mri" OR "ultrasonography" OR "usg")</td>
<td>137</td>
<td>0</td>
</tr>
</tbody>
</table>

mji.ui.ac.id
Figure 1. PRISMA flow diagram. HRUS=high-resolution ultrasonography; MRI=magnetic resonance imaging; PRISMA=Preferred Reporting Items for Systematic Reviews and Meta-Analyses; TMJ=temporomandibular joint

Table 2. Characteristics of the studies

<table>
<thead>
<tr>
<th>First author, year</th>
<th>Study design</th>
<th>Place setting</th>
<th>Sample size</th>
<th>Patient characteristics</th>
<th>HRUS examination</th>
<th>Outcome</th>
<th>Study limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chalkoo, 2015</td>
<td>Case-control</td>
<td>India</td>
<td>19</td>
<td>Case*: 4 males and 7 females; control*: 3 males and 5 females; 23–70 years old</td>
<td>Open- and closed-mouth position; linear array probe 17 MHz</td>
<td>USG as a noninvasive diagnostic technique was potential for detecting TMJ internal derangement at significantly lower cost.</td>
<td>Small sample sizes</td>
</tr>
<tr>
<td>Habashi, 2015</td>
<td>Cross-sectional</td>
<td>Haifa, Israel</td>
<td>39</td>
<td>13 males and 26 females; 18–77 years old</td>
<td>TMJ static and dynamic movement; linear array transducer 5–17 MHz</td>
<td>• HRUS was a potential imaging method for diagnosing TMJ disc displacement. • MRI was still needed in selected cases.</td>
<td>• Small population • Each examination was conducted by a single examiner.</td>
</tr>
<tr>
<td>Talmaceanu, 2018</td>
<td>Cross-sectional</td>
<td>Romania</td>
<td>74</td>
<td>14 males and 60 females; 13–69 years old</td>
<td>TMJ static and dynamic movement; linear transducer 6.5–13 MHz</td>
<td>HRUS demonstrated high accuracy, sensitivity, and specificity in diagnosing TMJ disc displacement.</td>
<td>• Each examination was performed by a single radiologist. • The accuracy of MRI might be slightly different (accuracy not 100%). • Influenced by the examiner’s experience</td>
</tr>
<tr>
<td>Talmaceanu, 2020</td>
<td>Cross-sectional</td>
<td>Romania</td>
<td>50</td>
<td>8 males and 42 females; 15–61 years old</td>
<td>TMJ static and dynamic movement; linear array transducer 8–40 MHz; linear array probe 6.5–13 MHz</td>
<td>• HRUS showed high sensitivity, specificity, and accuracy for TMJ disc displacement. • The 20 MHz probe enabled a better differentiation tissue structure compared to 13 MHz.</td>
<td>NA</td>
</tr>
<tr>
<td>Refaat, 2021</td>
<td>Cross-sectional</td>
<td>Egypt</td>
<td>40</td>
<td>10 males and 30 females; 16–59 years old</td>
<td>Static position; linear array probe 5–17 MHz</td>
<td>HRUS may be used to diagnose internal derangement</td>
<td>Small sample sizes</td>
</tr>
</tbody>
</table>

HRUS=high-resolution ultrasonography; MRI=magnetic resonance imaging; NA=not available; TMJ=temporomandibular joint; USG=ultrasonography

*Case was patients with TMJ problems; †control consisted of patients who had neither any history nor any signs and symptoms of TMJ disorder on the head and neck examination. All patients had TMJ disorders, and all studies used MRI as the gold standard.
MHz linear array transducer and a 6.5–13 MHz linear array probe. Table 2 presents the characteristics of these studies.

Quality of the studies

The results of the methodological quality assessment of all studies are presented in Figure 2. All studies included patients with TMJ disorders. MRI was performed as the gold standard test in all studies. The HRUS images were obtained using a 5–17 MHz linear probe array. Two studies did not explain the blinding process, and three blinded the examiners to the clinical and MRI findings. Examinations were performed in a dark room with the patient in a supine position.

MRI compared to HRUS

The results showed variations in sensitivity, specificity, and accuracy, ranging from 74.3–93.7%, 84.2–100%, and 77.7–91.7%, respectively11–15 (Table 3). Three studies14,15,14 reported high sensitivity, specificity, and accuracy of HRUS for diagnosing TMJ disc displacement. Meanwhile, Refaat et al15 suggested that improving image quality through increased and purer frequencies in sonographic units could make HRUS widely applicable for diagnosing internal derangement of TMJ. Similarly, Chalkoo et al12 indicated that HRUS could identify the disc, its position, and the presence of TMJ internal derangements in the sagittal and coronal sections. Nonetheless, a larger number of patients is required to draw a definitive conclusion. Among the five included studies, the HRUS examination was performed in both a static position (open- and closed-mouth) and during dynamic movement of TMJ in three studies,11,13,14 whereas the other two conducted the HRUS examination only in a static position.12,15

DISCUSSION

Numerous imaging techniques, each with their strengths and weaknesses, have been employed to diagnose TMJ dislocation. The present study evaluated HRUS as a promising alternative diagnostic tool for TMJ dislocation, comparing its efficacy with the conventional gold standard MRI. This review found that the accuracy of sonography in diagnosing TMJ dislocation ranged from 77.7% to 91.7%, with a sensitivity of 74.3% to 93.7%, specificity of 84.2% to 100%, positive predictive value of 68.2% to 100%, and negative predictive value of 64.0% to 98.3%. The variations in the results can be partially attributed to the diverse resolutions of the ultrasound equipment. All five studies utilized multiple transducers with frequencies ranging from 5 to 17 MHz. Transducers with a high resolution (≥12 MHz) offer improved visualization of the TMJ. Another factor influencing sonography

Table 3. Sensitivity and specificity data of each study

<table>
<thead>
<tr>
<th>First author, year</th>
<th>Sensitivity (%)</th>
<th>Specificity (%)</th>
<th>PPV</th>
<th>NPV</th>
<th>LR+ (%)</th>
<th>LR- (%)</th>
<th>AUC (%)</th>
<th>Accuracy (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chalkoo,12 2015</td>
<td>90.9</td>
<td>100</td>
<td>100</td>
<td>88.9</td>
<td>\infty</td>
<td>0.1</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Habashi,13,14 2015</td>
<td>74.3</td>
<td>84.2</td>
<td>89.7</td>
<td>64.0</td>
<td>4.7</td>
<td>0.3</td>
<td>N/A</td>
<td>77.7</td>
</tr>
<tr>
<td>Talmaceanu,14 2018</td>
<td>93.1</td>
<td>87.8</td>
<td>87.1</td>
<td>93.5</td>
<td>7.7</td>
<td>0.1</td>
<td>N/A</td>
<td>90.3</td>
</tr>
<tr>
<td>Talmaceanu,15 2020</td>
<td>75.8</td>
<td>86.8</td>
<td>90.3</td>
<td>68.7</td>
<td>5.8</td>
<td>0.3</td>
<td>N/A</td>
<td>80</td>
</tr>
<tr>
<td>Refaat,15 2021</td>
<td>93.7</td>
<td>89.1</td>
<td>68.2</td>
<td>98.3</td>
<td>8.6</td>
<td>0.1</td>
<td>91.4</td>
<td>91.7</td>
</tr>
</tbody>
</table>

AUC=area under the curve; LR+=positive likelihood ratio; LR-=negative likelihood ratio; NPV=negative predictive value; PPV=positive predictive value.
Comparisons with previous studies indicated that dynamic high-resolution sonography has valuable potential for diagnosing TMJ disorders, offering information on internal derangement and abnormal disc positions. However, limitations in distinguishing certain conditions and the need for better standardization of sonographic techniques underscore the complementary role of MRI in selected cases.

The limitation of this systematic review was the small sample sizes in three out of five studies included. Therefore, further research with larger sample sizes is necessary to validate these findings.

A good diagnostic tool should have high sensitivity and specificity. The findings of this study have significant implications for policy and practice regarding the diagnosis of TMJ disorders. The positive results regarding the sensitivity and specificity of sonography underscore its potential as a valuable diagnostic tool for TMJ evaluation.

In conclusion, HRUS showed high sensitivity, specificity, and accuracy in diagnosing TMJ disc displacement. HRUS is a promising and reliable alternative diagnostic tool for assessing the position of TMJ discs in TMJ disorders. However, the diagnostic value of HRUS is highly dependent on the examiner’s skills and should be correlated with the clinical findings. Notably, MRI is still necessary for more complex or advanced cases.

Conflict of Interest
The authors affirm no conflict of interest in this study.

Acknowledgment
None.

Funding Sources
None.

REFERENCES
6. Xiong X, Ye Z, Tang H, Wei Y, Nie L, Wei X, et al. MRI of TMJ has prompted the utilization of various imaging techniques, each with its distinctive strengths and weaknesses. A crucial aspect of this diagnostic pursuit is determining the disc position, which often requires specialized information that contributes to an accurate diagnosis. Dynamic sonography exhibited a higher specificity (95%) than MRI. The divergence in HRUS examination approaches among the selected studies adds complexity to interpreting the results. Three studies incorporated dynamic assessments, evaluating both open- and closed-mouth positions and dynamic movements to provide a more comprehensive understanding of TMJ functionality. In contrast, the two remaining studies conducted HRUS examinations solely in static positions. This discrepancy emphasizes the variability in methodologies across research endeavors, prompting the need for standardized protocols to ensure consistency and comparability in future studies.

The assessment of internal derangement of the TMJ has prompted the utilization of various imaging techniques, each with its distinctive strengths and weaknesses. A crucial aspect of this diagnostic pursuit is determining the disc position, which often requires specialized information that contributes to an accurate diagnosis. Dynamic sonography exhibited a higher specificity (95%) than MRI. The divergence in HRUS examination approaches among the selected studies adds complexity to interpreting the results. Three studies incorporated dynamic assessments, evaluating both open- and closed-mouth positions and dynamic movements to provide a more comprehensive understanding of TMJ functionality. In contrast, the two remaining studies conducted HRUS examinations solely in static positions. This discrepancy emphasizes the variability in methodologies across research endeavors, prompting the need for standardized protocols to ensure consistency and comparability in future studies.

Refaat et al. proposed enhancing image quality using higher and clearer frequencies in sonographic units, bringing an interesting dimension to the discussion and suggesting a potential method of improving HRUS technology. The idea involves obtaining pictures through sonography of the musculoskeletal system and using advanced and clearer sound frequencies. This suggestion holds significance, as it could contribute to refining the capabilities of HRUS, making it more effective in diagnosing conditions such as TMJ dislocation.

The limitation of this systematic review was the small sample sizes in three out of five studies included. Therefore, further research with larger sample sizes is necessary to validate these findings.

A good diagnostic tool should have high sensitivity and specificity. The findings of this study have significant implications for policy and practice regarding the diagnosis of TMJ disorders. The positive results regarding the sensitivity and specificity of sonography underscore its potential as a valuable diagnostic tool for TMJ evaluation.

In conclusion, HRUS showed high sensitivity, specificity, and accuracy in diagnosing TMJ disc displacement. HRUS is a promising and reliable alternative diagnostic tool for assessing the position of TMJ discs in TMJ disorders. However, the diagnostic value of HRUS is highly dependent on the examiner’s skills and should be correlated with the clinical findings. Notably, MRI is still necessary for more complex or advanced cases.

Conflict of Interest
The authors affirm no conflict of interest in this study.

Acknowledgment
None.

Funding Sources
None.

REFERENCES
6. Xiong X, Ye Z, Tang H, Wei Y, Nie L, Wei X, et al. MRI of