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Formulation of mice diet with low cholecalciferol content
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ABSTRACT
BACKGROUND Vitamin D deficiency has been linked to autoimmune diseases, cancer, 
and cardiovascular diseases. Although 1 study attempted to elucidate the ingredients 
required to make this diet, the process remained unclear. Hence, this study aimed to 
customize a low cholecalciferol diet with good tolerability in mice.

METHODS We customized a diet containing a normal cholecalciferol content  
(1 IU/g diet) and another with a low cholecalciferol content (0.05 IU/g diet). Samples 
from both diets were sent to an independent laboratory to ensure that the levels of 
cholecalciferol, phosphorus, and calcium present in the custom diets matched our 
calculations. 5 mice were fed the customized normal cholecalciferol diet for 1 week 
to assess tolerability. Tolerability was assessed by measuring the amount of food 
consumed, weight gained, and the presence of any adverse events.

RESULTS Cholecalciferol, phosphorous, and calcium levels in both diets satisfactorily 
matched our calculations. The diet was well tolerated without any adverse events or 
mortalities. The mice consumed an adequate amount of food (mean: 5.34 [0.08] g 
diet/day, 95% confidence interval [CI]: 5.12–5.56; 19.38 kcal, fat: 0.43 g, protein: 0.14 g, 
carbohydrates: 3.16 g, and cholecalciferol: 0.007 mg) and gained a slight amount of 
weight by the end of the experiment (mean: 1.86 [0.46] g, 95% CI: 0.58–3.14).

CONCLUSIONS This study successfully created 2 custom diets with quantified 
cholecalciferol contents. This animal model may prove valuable for studies involving 
vitamin D.
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Vitamin D, a steroid hormone, plays a vital role in 
regulating the innate and adaptive immune system.1 
The Institute of Medicine defines vitamin D deficiency 
as <12 ng/ml, while the Endocrine Society sets the 
threshold at <29 ng/ml.2 Vitamin D deficiency has been 
linked to autoimmune diseases such as systemic lupus 
erythematosus, rheumatoid arthritis, systemic sclerosis, 
psoriatic arthritis, ankylosing spondylitis, inflammatory 
bowel disease, and autoimmune thyroid diseases.1,3 
One way in which vitamin D deficiency contributes 

to the pathogenesis of autoimmune diseases is by 
regulating dendritic cell (DC) maturation. Immature 
DCs have a higher capacity for antigen uptake and 
processing, whereas mature DCs have a lower capacity 
and function as antigen-presenting cells, triggering an 
overreactive inflammatory response. Vitamin D inhibits 
DC maturation and suppresses the inflammatory 
response.1,4

Several studies have linked vitamin D to 
cancer, potentially reducing its risk through anti-
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inflammatory effects, as chronic inflammation can 
trigger carcinogenesis. Several single nucleotide 
polymorphisms affecting the vitamin D pathway, such 
as rs731236 (Taql), rs1544410 (Bsml), and rs2228570 
(Fokl), have also been found to be associated with 
increased cancer risk.5 Additionally, vitamin D plays a 
role in cardiovascular health by inhibiting angiotensin 
I and II in the myocardium, kidneys, and renal arteries, 
while promoting the production of angiotensin-
converting enzyme 2, which helps break down 
angiotensin II. These actions endow vitamin D with 
antihypertensive, antifibrotic, and antihypertrophic 
properties.6

While human studies have linked vitamin D 
deficiency to various diseases, most are observational 
studies that cannot confirm causation.3,7–15 Animal 
models, such as mice fed a low cholecalciferol diet, 
may be pivotal in proving this hypothesis. Vitamin 
D levels are influenced by many factors, including 
diet, sunlight, gastrointestinal absorption, and the 
hydroxylation capacity of the liver and kidneys.16 
Although previous studies have assessed the role 

of vitamin D deficiency in animal models, they lack a 
detailed, step-by-step method for preparing a low 
cholecalciferol mouse diet.17–19 Many steps are needed 
to create a validated low cholecalciferol mouse diet 
with the desired cholecalciferol content; this involves 
calculating the correct amount of cholecalciferol 
needed, as well as evenly distributing cholecalciferol 
to the chow. Thus,  this study aimed to formulate a 
well-tolerated low cholecalciferol diet for mice.

METHODS

Diet
We designed two diets with different amounts 

of cholecalciferol: one with normal recommended 
dietary intake (RDI) cholecalciferol content (1 IU/g of 
diet) and another with a low cholecalciferol content 
(0.05 IU/g).2 A study by Mallya et al2 confirmed that 
0.05 IU/g cholecalciferol is sufficient to induce vitamin 
D deficiency. All ingredients except cholecalciferol 
were identical in both diets. Since Mallya et al2 had 
proven its effectiveness in lowering vitamin D levels, 

Figure 1. Procedure for making 
cholecalciferol solution

Figure 2. Procedure for creating 
a customized diet with measured 
cholecalciferol content
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our study focused on the process of creating a low 
cholecalciferol diet instead of manipulating vitamin D 
levels in mice.

Preparation of cholecalciferol solution
We used a cholecalciferol concentration of 1 IU/g 

diet for the normal diet and 0.05 IU/g diet for the low 
cholecalciferol diet. Because 1 IU of vitamin D equals 
0.025 µg, normal and low diets required 25 µg/kg and 
1.25 µg/kg, respectively. To facilitate extraction, we 
first prepared a 1,000 µg/ml of cholecalciferol solution 
(solution 1) by dissolving 5 mg of cholecalciferol in 5 ml 
of ethyl acetate. Next, we diluted 100 µl of solution 1 
in 10 ml of ethyl acetate to create 10 µg/ml (solution 
2). We then mixed 2.5 ml of solution 2 into 1,000 g of 
normal diet and 0.125 ml of solution 2 into 1,000 g of 
low cholecalciferol diet (Figure 1).

Procedure for making the diet
All ingredients, as shown in Table 1, except 

tapioca starch, corn oil, and cholecalciferol solution, 
were evenly mixed using a mortar. Water was added 
to tapioca starch (2.5:1 ratio) and slowly cooked 
until the starch thickened into a transparent, mochi-
like texture. Cooked starch was then added to the 
previously mixed ingredients and mixed thoroughly. 
The cholecalciferol solution was first homogenized 
with corn oil, before being gradually and evenly 
added to the mixture. The final mixture was weighed, 
portioned, and placed in a freezer for 24 hours, before 
being cut into small pieces for feeding (Figure 2). To 
verify the accuracy of the concentrations, diet samples 
were sent to an independent commercial laboratory 
(Regional Health Laboratory) to ensure that the 
concentrations of cholecalciferol, phosphorus, and 
calcium remained within <15% of the target values 
(RDI: calcium, 10 g/kg; phosphorus, 3 g/kg).2

Animals and housing
Five female BALB/c mice (4–6 weeks old) obtained 

from Inolabs, Indonesia, were used in this study. 
After a 1-week acclimatization period to a standard 
diet, the mice were switched to a customized normal 
cholecalciferol diet to assess tolerability. This was 
defined as a sufficient diet intake (3.5–3.75 g diet/day), 
with adequate weight gain (≥85.7 g/day) and no major 
adverse events (e.g., death).20,21 Daily measurements 
recorded food consumption and body weight before 
and after the study. The mice were also monitored 

for acute toxicity to ethyl acetate, such as vomiting, 
salivation, tremor, lethargy, irritation to the eyes, 
loss of coordination, and death.22 According to the 
Food and Drug Administration guidelines, a 1–2-week 
observation period was deemed sufficient to detect 
any treatment-related effects.23 Another study using 
ethyl acetate in mice also used a 1-week observation 
period.24 Thus, we deemed a 1-week observation period 
to be sufficient in this study. All mice were housed in 
standard cages with ad libitum access to water and 
food. Statistical analyses were performed using SPSS 
software version 22 (IBM Corp., USA). The protocol for 
this study was approved by the Ethics Committee of 
the Faculty of Medicine, Universitas Indonesia – Cipto 
Mangunkusumo Hospital (No: KET-589/UN2.F1/ETIK/
PPM.00.02/2022).

RESULTS

Levels of cholecalciferol, calcium, and phosphorus in 
the custom diet

After preparing the custom diets (Table 1, 
Supplementary Table 1), samples were sent to the 

Ingredients Amounts 
(g/kg)

Casein, vitamin-free 180.00
L-cystine 2.00
Dextrose 580.78
Corn oil 100.00
Cellulose fiber, microcrystalline 30.00
Modified AIN-93M mineral mix without calcium 
and phosphorus 13.37

Calcium carbonate anhydrous 29.93
Phosphorus 1.03
Potassium phosphate, dibasic anhydrous 4.90
Potassium phosphate, monobasic 3.90
Corn starch 13.22
Choline dihydrogen citrate 3.50
Vitamin E, DL-alpha tocopheryl acetate (500 IU/g) 0.24
Vitamin A palmitate (500,000 IU/g) 0.04
Vitamin mix AIN-93-VX, without vitamin A, D, and E 5.00
6-ethoxy-2,2,4-trimethyl-1,2-dihidroquinoline 0.02
Tapioca starch (5%) (water:tapioca starch = 2.5:1) 50.00
Cholecalciferol*
   Normal vitamin D diet (1 IU/g = 1,000 IU/kg) 25.00
   Low cholecalciferol diet (0.05 IU/g = 50 IU/kg) 1.25

Table 1. Composition of custom diets

*Cholecalciferol is in µg/kg
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Regional Health Laboratory to measure vitamin D, 
calcium, and phosphorus levels. The results confirmed 
that the calculated levels of all three minerals were 
similar (Table 2).

Tolerance of mice to the custom diet 
The low cholecalciferol diet was well tolerated, 

with no deaths or adverse events. On average, the 
mice consumed a satisfactory amount of food (mean: 
5.34 [0.08] g diet/day, 95% confidence interval [CI]: 
5.12–5.56; 19.38 kcal, fat: 0.43 g, protein: 0.14 g, 
carbohydrates: 3.16 g, and cholecalciferol: 0.007 µg) 
(Figure 3, Supplementary Figure 1) and gained weight 
(mean: 1.86 [0.46] g; 95% CI: 0.58–3.14) (Figure 4).

DISCUSSION

In this study, we successfully customized a low 
cholecalciferol diet with good tolerability in mice, 
with no adverse events or deaths. The mice consumed 
adequate food and gained sufficient weight. While 
Mallya et al2 provided a formula, they did not report the 
steps required to create the diet, giving our study an 
advantage in methodology documentation.2

Vitamin D is associated with autoimmune diseases, 
cancer, and cardiovascular diseases, highlighting its 
role in immune regulation. Vitamin D is mainly obtained 
via diet or cutaneous synthesis under ultraviolet 
light exposure, in which 7-dehydrocholesterol is 
converted to pre-cholecalciferol, which is later 
isomerized into cholecalciferol. Once absorbed or 
synthesized, cholecalciferol undergoes hydroxylation 
in the liver to form 25-hydroxycholecalciferol, which 
is then converted in the kidney to calcitriol, the 
active metabolite of vitamin D, with the help of 
1α-hydroxylase.25

Vitamin D levels are influenced by the calcium 
and phosphorus balance. In vitamin D deficiency, 
intestinal calcium absorption declines, leading to 
hypocalcemia, which triggers parathyroid hormone 
(PTH) production to increase serum calcium 
levels through the increased renal production of 
vitamin D. Elevated phosphorus levels can further 
stimulate PTH production, underscoring the need for 
balanced calcium and phosphorus levels in vitamin 
D metabolism. It is important to ensure sufficient 
calcium and phosphorus levels to accurately induce 
vitamin D deficiency using a low cholecalciferol diet.26 
In this study, we accounted for this by ensuring 
adequate amount of calcium and phosphorus in the 
customized diets, which were confirmed to be within 
the required levels in the finalized product.

The diet formulation involved evenly mixing 
ingredients, grinding the mixture to the correct 

Figure 3. Amount of diet consumed each day

Figure 4. Changes in body weight (BW) during the 
experimental period
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density, moistening, drying, and cooling before 
packaging and feeding. The diet may also undergo 
irradiation or autoclaving for sterilization, but these 
steps require specialized factory-level equipment 
that may not be available in a standard laboratory.20 
However, our method is simpler, cost-effective, and 
feasible in a laboratory with minimal equipment.

Throughout this study, we made three attempts 
before obtaining the correct levels of cholecalciferol, 
phosphorus, and calcium in the custom diets, according 
to our calculations (Supplementary Table 2). In the first 
attempt, the levels in the sampled custom diets did not 
match our calculations. To exclude measurement errors 
due to calibration issues, we sent samples from both 
diets to an independent laboratory (Regional Health 
Laboratory) for confirmation; however, the results 
did not match. Next, we assumed that the ingredients 
were not evenly mixed and changed from manual to 
mortar mixing. Although this change reduced the 
discrepancy between our calculations and the levels 
detected in the custom diets, it was still unsatisfactory. 
To address this, we changed the concentration of the 
cholecalciferol solution from 10,000 µg/ml to 10 µg/
ml. We made this change as we hypothesized that 
using a higher concentration of cholecalciferol (10,000 
µg/ml) required adding only a very small volume 
(20 µl for normal cholecalciferol diet and 0.65 µl for 
low cholecalciferol diet) during production. It may 
be difficult to distribute such a small volume evenly 
throughout the mixture. In addition, the mixing process 
was slightly altered. Previously, cholecalciferol solution 
was added to corn oil and then directly incorporated 
into the mixture without homogenization. This could 
have led to uneven mixing owing to the high viscosity 
of the corn oil. Thus, we altered this step by ensuring 
the homogenization of the cholecalciferol solution 
with corn oil before adding it to the mixture. Ultimately, 
the desired levels of cholecalciferol, phosphorus, and 
calcium were successfully achieved.

AIN-93M, a standard mouse chow, typically 
contains soybean oil as the required source of fat in 
the mouse diet. However, soybean oil contains vitamin 
D, which may affect the final vitamin D levels when 
formulating a low cholecalciferol diet. To minimize this 
effect, it is essential to use oil with a minimal vitamin D 
content to ensure that the final vitamin D levels of the 
customized diet are aligned with the desired amount 
and remain unaffected by additional ingredients. This 
study addressed this issue by substituting soybean oil 

with corn oil, which has a minimal vitamin D content. 
Furthermore, vitamin D, a fat-soluble vitamin, requires 
an oil-based carrier. Corn oil, an excellent carrier of 
vitamin D, achieved >80% bioaccessibility of vitamin D, 
making it an ideal choice for this study.27

After successful diet preparation, we tested its 
tolerability in mice. In addition to monitoring adverse 
events, we assessed the food consumption to 
determine whether the custom diets were adequately 
consumed. Additionally, the weight gain was 
evaluated to confirm that the diet provided sufficient 
nutrition.

In this study, mice tolerated the custom diet well, 
with a slight weight gain after consumption. Although 
we successfully customized a low cholecalciferol diet, 
this study still has several limitations. One limitation is 
that we did not measure the serum levels of vitamin D, 
calcium, or phosphorus in the experimental mice after 
consuming the diet. In addition, we used only a small 
sample of animals and a short observation period. 
Studies with a larger number of samples and longer 
observation periods may be required to further validate 
our findings. In conclusion, we successfully developed 
two custom diets with quantified cholecalciferol 
content. The custom diet was well tolerated in the mice 
without any reported adverse events.
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