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      Background

      
				Accurate diagnosis and grading of prostate cancer are essential for
				treatment planning. The role of artificial intelligence in prostate cancer intervention
				and diagnosis (RAPID) is a study aimed at developing artificial intelligence (AI) models
				to enhance diagnostic precision in prostate cancer by distinguishing malignant from
				non-cancerous histopathological findings.		  


       


      Methods

      
				Histopathological images were collected between 2023 and 2024 at the
				Department of Anatomical Pathology, Faculty of Medicine, Universitas Indonesia. The
				dataset included benign prostatic hyperplasia and prostate cancer cases. All slides
				were digitized and manually annotated by pathologists. Patch-based classification
				was performed using convolutional neural network and transformer-based models to
				differentiate malignant from non-malignant tissues.			


       


      Results

      
				A total of 529 whole-slide images were processed, yielding 26,418 image
				patches for model training and testing. Deep learning models achieved strong
				performance in classification. Architectures including EfficientNetV2B0, Xception,
				ConvNeXt-Tiny, and Vision Transformer (ViT) achieved near-perfect classification
				outcomes. EfficientNetV2B0 reached an AUC of 1.00 (95% CI: 1.00–1.00), sensitivity 0.99
				(95% CI: 0.99–1.00), and specificity 1.00 (95% CI: 1.00–1.00). Xception and ConvNeXt-Tiny
				both achieved AUC 1.00 (95% CI: 1.00–1.00) with sensitivity and specificity of 1.00 (95%
				CI: 1.00–1.00). ViT performed strongly with AUC 0.999 (95% CI: 0.99–1.00), sensitivity
				0.99 (95% CI: 0.99–0.99), and specificity 0.99 (95% CI: 0.99–0.99).			


       


      Conclusions

      
				RAPID demonstrated high potential as an AI-based diagnostic tool for
				prostate cancer, showing excellent accuracy in histopathological classification using
				the Indonesian dataset. These findings highlight the feasibility of deploying deep
				learning models to support diagnostic decision-making in clinical practice.			
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				Prostate cancer, the fourth most newly diagnosed
				cancer worldwide, accounted for 1.47 million new
				cases and 397,000 deaths in 2022, and remains the
				eighth leading cause of cancer mortality. It ranks as the
				fifth most prevalent cancer among Indonesian men,
				with 13,130 new cases (approximately 7.0%) in 2022.1–3
				Prognosis in prostate cancer depends on several
				factors, including age at diagnosis, tumor grade, tumor
				volume, and evidence of local invasion or metastasis.4
				These disparities and prognostic challenges highlight
				the urgent need for early detection and optimized
				treatment strategies.


				
				Distinguishing benign prostatic hyperplasia (BPH)
				from prostate cancer represents a key diagnostic
				challenge, as both conditions commonly affect older
				men and share overlapping symptoms, particularly
				lower urinary tract symptoms (LUTS). Although
				BPH prevalence increases significantly with age—affecting >70% of men aged 60–69 years and >80%
				of men aged >70 years—prostate cancer incidence
				also rises with age and can be asymptomatic in early
				stages. Additionally, prostate size does not always
				correlate with LUTS severity, and regional variations
				further complicate diagnosis.5 The clinical and
				histopathological overlap between BPH and prostate
				cancer, along with the frequent coexistence of both
				conditions and interobserver variability in conventional
				histopathological assessment, further complicates
				diagnosis and treatment decisions.6,7 These limitations
				underscore the need for diagnostic tools that are more
				objective and accurate, providing decision support
				for pathologists in reliably distinguishing benign from
				malignant prostate conditions, while recognizing that
				pathological assessment remains the gold standard.


				
				Given these ongoing diagnostic challenges, there
				is increasing interest in applying artificial intelligence
				(AI) and machine learning algorithms to enhance
				clinical and histopathological evaluation in prostate
				cancer.8–10 However, recent international surveys of
				urology healthcare providers revealed that although
				there is strong optimism regarding AI’s role in
				diagnostics and treatment decision-making, clinical
				validation remains a prerequisite for widespread
				adoption.11 The role of artificial intelligence in
				prostate cancer intervention and diagnosis (RAPID)
				is an AI-based diagnostic framework developed at
				a leading national referral and teaching hospital in
				Indonesia. It integrates pathological data to support
				the development of AI models for prostate cancer
				screening, diagnosis, and prognosis. The unique
				histological and morphological characteristics of
				prostate cancer in individual patients necessitate
				personalized research approaches using samples
				and data derived from the Indonesian population.
				Therefore, in this study, we aimed to evaluate the
				RAPID diagnostic framework by developing and
				testing convolutional neural network (CNN) and
				transformer-based models to distinguish prostate
				cancer from benign histopathological findings in
				an Indonesian dataset, with the goal of enhancing
				diagnostic accuracy, reproducibility, and clinical
				decision support in prostate cancer management.					



			 

      
        METHODS

      


			
			 

			
				This was a single-center, retrospective diagnostic
				accuracy study of stored histopathology slides in
				line with the biomedical image analysis challenges,
				standards for reporting of diagnostic accuracy studies
				artificial intelligence (STARD-AI), and strengthening
				the reporting of observational studies in epidemiology
				(STROBE) guidelines. This study comprised several
				key stages, as illustrated in Figure 1. First, the patient
				slides were digitized using a whole-slide imaging (WSI)
				scanner.12-15 Subsequently, the digitized slides were
				preprocessed and the relevant features were extracted
				from the WSI files. Each extracted region was manually
				labeled by an expert pathologist. Subsequently, the
				labeled data were divided into smaller image patches
				and split into training, validation, and test sets. Data
				augmentation techniques were applied to balance
				the data and enhance model generalization. Finally,
				multiple deep-learning models were trained on the
				prepared dataset, and their performances were
				evaluated using a range of quantitative metrics.
				Potential confounders and effect modifiers, including
				stain variability, scanner or batch effects, tissue type,
				and inflammatory changes, have been recognized as
				factors influencing model performance.
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							Figure 1.
						
						
							Workflow of the WSI-based prostate histopathology pipeline. (a) Dataset acquisition: a total of 529 WSIs scanned at
							×40 magnification; (b) region of interest extraction and labeling: pathologists manually delineated diagnostically relevant
							regions, saved as 2048 × 2048 pixel images, and annotated as malignant or non-malignant; (c) pre-processing and augmentation:
							extracted regions were patch-cropped into 512 × 512 pixels and underwent stain normalization and data augmentation; (d) model
							development: CNN, transformer models, and hybrid architectures were independently trained on the training set; (e) model
							evaluation: performance was assessed on a held-out test set using accuracy, sensitivity, specificity, PPV, NPV, F1-score, and AUC,
							each reported with 95% confidence interval. CNN=convolutional neural networks; NPV=negative predictive value; PPV=positive
							predictive value; ROC AUC=area under the receiver operating characteristic curve; WSI=whole-slide imaging						
					

				

				 

				


				 

				
					Dataset collection

					
				Data from patients diagnosed with prostate
				cancer and BPH were collected from the archive of
				the Department of Anatomical Pathology, Faculty
				of Medicine, Universitas Indonesia. Consecutive
				sampling was applied to include all cases from January
				2023 to December 2024. This approach ensured
				that all consecutive eligible cases during the study
				period were included without additional selection
				beyond the predefined inclusion and exclusion
				criteria, thereby minimizing sampling bias. Inclusion
				criteria included history of core biopsy, transurethral
				resection, or prostatectomy. Cases with missing or
				poor-quality hematoxylin and eosin (H&E) slides, or
				those exhibiting marked inflammation or diagnosed as
				overt prostatitis, were excluded. All H&E slides were
				prepared with sufficient quality to allow digitization by
				the slide scanner. Slides that were blurred, unevenly
				stained, scattered, or otherwise inadequate for
				histopathological evaluation were excluded from
				the study. The scanner was calibrated on a monthly
				basis in accordance with the standard operating
				procedures established by the respective slide scanner
				company. Importantly, the non-tissue background was
				retained during digitization to preserve the natural
				appearance of each slide and maintain fidelity with
				routine histopathological practice. Several BPH cases
				included in the study demonstrated mild to moderate
				inflammation.


				
				A board-certified pathologist with 10 years of
				experience and subspecialty training in uropathology
				(Pathologist 1) re-reviewed all H&E slides under a
				light microscope (Leica Microsystems, Germany) and
				scanned them using an Aperio GT450 whole-slide
				scanner (Leica Biosystems, USA), yielding a total of
				555 WSIs. All slides were scanned at ×40 magnification,
				corresponding to a spatial resolution of 0.26 μm/pixel.
				The scanner was operated using the manufacturer’s
				default international color consortium color profile,
				and automated color calibration was performed
				prior to each scanning session using an onboard
				reference. As part of the image acquisition workflow,
				quality control procedures were applied using the
				scanner’s built-in algorithms. A second board-certified
				pathologist with 12 years of experience, without
				uropathology subspecialty (Pathologist 2), labeled the
				images as malignant or non-malignant. Labeling was
				performed according to the latest diagnostic criteria
				of WHO/ISUP classification.16 Equivocal cases requiring
				immunohistochemistry for definitive diagnosis were
				excluded, ensuring that only cases with clear diagnostic
				categories were retained. Pathologist 1 subsequently
				re-evaluated the categorizations or labeling made by
				Pathologist 2, and no discrepancies were identified.


				 

				
					Region extraction and labeling

					
				All digitized WSIs were subjected to manual region
				of interest (ROI) extraction using ImageScope (Aperio
				Technologies, USA). For each slide, approximately
				15–25 representative regions were selected by visual
				inspection, focusing on areas of diagnostic relevance.
				These regions were extracted at a fixed resolution
				of 2048 × 2048 pixels and saved in an uncompressed
				TIFF format to preserve image quality. Representative
				examples of extracted regions are shown in Figure
				1b. This standardized patch extraction process
				ensures consistent image quality and dimensions for
				subsequent manual labeling and deep-learning model
				development.


				
				The extracted ROIs were subsequently reviewed
				and labeled by board-certified pathologists who
				was blinded to patient metadata, clinical outcomes,
				and the assessments among pathologists to reduce
				potential bias during the annotation process. Then,
				each verified image was categorized into one of two
				classes, malignant or non-malignant, and organized
				into the corresponding directories. Accordingly, in
				this study, the AI classification output was limited to
				these two categories and did not provide further subclassification.
				The diagnostic criteria for acinar prostatic
				adenocarcinoma are divided into essential and desirable
				features. Malignant glands infiltrating the stroma,
				loss of basal cells, and nuclear features including
				enlargement and hyperchromasia are essential criteria.
				Prominent nucleoli, atypical luminal contents, and
				cytoplasmic features are desirable criteria. No missing
				labels remained in the dataset, and any unreadable or
				artefactual regions were excluded during verification
				to ensure only diagnostically interpretable images
				were included. Specific but not sensitive findings,
				such as perineural invasion, mucinous fibroplasia,
				and glomerulations, are also included in the desirable
				criteria. Ductal type adenocarcinoma with papillary
				structures and/or complex and cribriform glands
				lined with tall columnar pseudostratified cells is also
				included in the malignant type, but none matched the
				criteria in this case selection.16 Grading in this analysis
				was limited to discrimination between malignant and
				non-malignant lesions, and identification of prostatic
				adenocarcinoma only, without further sub-classification
				of histological patterns. ROIs were manually selected by
				the annotators to prevent exclusion of representative
				tumor and non-tumor areas. This subjective manual
				selection approach was applied consistently across all
				cases to minimize sampling bias and obtain consistent
				datasets.


				 

				
					Data preprocessing

					
				In the data preprocessing stage, each categorized
				image was divided into smaller patches using the
				Patchify library.17 Specifically, each 2048 × 2048 pixel
				image was cropped into multiple non-overlapping 512 ×
				512 pixel patches (step size = 0). This patching strategy
				was employed to reduce computational complexity and
				memory demands during model training, given the high
				resolution of the original images. Then, the resulting
				patches were randomly partitioned into training,
				validation, and testing sets using a 70:15:15 split ratio.
				Figure 1C (left) shows representative examples of the
				extracted image patches used for the model training
				and evaluation.


				
				To address the significant class imbalance,
				data augmentation was applied to the malignant
				class using StainLib and Albumentations.18,19 Each
				malignant patch was augmented 20-fold using color
				normalization based on the Macenko method,20 which
				simulates realistic variations in histological staining.
				This strategy substantially increased the number of
				malignant samples, bringing the dataset closer to
				class parity and thereby enhancing model fairness
				while reducing prediction bias toward the non-malignant
				class.


				 

				
					Model training

					
				The evaluated architectures encompassed
				three major families of deep-learning models: CNNs,
				transformer-based models, and hybrid designs. CNNs
				are designed to learn local spatial features through
				convolutional operations and pooling layers, making
				them particularly effective in medical image analysis,
				where fine-grained morphological features are critical.17
				These models are well-suited for histopathological
				classification tasks, as they can extract localized
				patterns related to glandular structures, nuclei, or
				stromal components. Transformer-based models,
				originally developed for natural language processing,
				rely on self-attention mechanisms to model long-range
				dependencies across input sequences or image
				patches. Histopathologically, transformers can capture
				global contextual relationships across large images,
				which is essential for accurately identifying patterns
				that may span broad tissue regions. Their ability
				to holistically weigh spatial features can enhance
				diagnostic precision, especially in complex or diffuse
				cases.21 Hybrid architectures aim to integrate the
				strengths of both CNNs and transformers. These models
				typically retain the efficient local feature extraction
				of CNNs while incorporating architectural elements
				from transformers, such as normalization strategies,
				attention-inspired block design, and modified
				activation functions, to improve the performance and
				generalizability of visual tasks.


				
				Our findings were applied uniformly across
				all specimen types, including prostate biopsies,
				transurethral resection of the prostate samples
				(TURP), and radical prostatectomy specimens, thereby
				providing a generalizable assessment independent
				of specimen origin. Nonetheless, we recognize the
				potential for domain shift, as differences in tissue
				processing, staining protocols, and scanner calibration
				between specimen types may influence reproducibility
				and generalizability. Although this study did not
				specifically address domain adaptation, future work
				will aim to incorporate strategies to minimize the
				impact of domain shift and further refine prognostic
				stratification.


				
				The CNN-based models evaluated in this study
				included ResNet50, ResNet50V2, DenseNet121,
				MobileNetV2, EfficientNetV2B0, and Xception.22–26
				Transformer-based models tested were the Vision
				Transformer (ViT)27 and the Data-efficient Image
				Transformer (DeiT).28 The hybrid architecture
				evaluated was ConvNeXt-Tiny,29 which applies
				modern transformer design principles within a
				convolutional framework. Model training was
				performed using Google Colab Pro+ (Google
				LLC, USA), providing access to high-performance
				NVIDIA A100 GPUs and 83 GB of RAM. All models
				were implemented and trained using Keras version
				3 (François Chollet & Google Research, USA),
				with consistent hyperparameter settings applied
				across all backbone architectures to ensure a fair
				comparison. The architectural details for each model
				are provided in the Supplementary Materials, and all
				the models were trained using the Adam optimizer
				with a fixed learning rate of 0.0001. The classification
				task was binary, and sparse categorical cross-entropy
				was used as the loss function. A batch size
				of 32 was applied during training over a maximum
				of 25 epochs, and early stopping was implemented
				to prevent overfitting. The early stopping criterion
				monitored validation loss with a patience value of
				five epochs. To ensure reproducibility, a random
				seed of 1,337 was applied across all training runs.


				
				In this study, we aimed to develop a model with
				high sensitivity and specificity for detecting prostate
				carcinoma. In subsequent stages, internal validation
				will be performed using an in-house dataset derived
				from hospital cases, followed by external validation
				involving cases from other institutions assessed by
				multiple pathologists. These validation phases are
				planned for future investigations, along with the
				development of appropriate software tailored to the
				needs of daily clinical practice.


				 

				
					Model evaluation

					
				A set of quantitative metrics was computed
				to evaluate the diagnostic performance of each
				model. These included accuracy, recall (sensitivity),
				precision, F1-score, positive predictive value (PPV),
				negative predictive value (NPV), and the area
				under the receiver operating characteristic curve
				(AUC ROC). Macro-averaged scores were used for
				accuracy, recall, precision, and F1-score to ensure
				equal weighting of the malignant and non-malignant
				classes. A fixed decision threshold of 0.5 was applied
				across all models for classification. All performance
				metrics were reported with 95% confidence intervals
				(CI) and calculated via bootstrap resampling with
				1,000 iterations. Statistical analysis was performed
				using Python v3.12.11 (Python Software Foundation,
				USA), with CI estimation and resampling conducted
				using the scikit-learn and scipy.stats libraries.
				Decision-curve analysis and calibration analysis were
				considered; however, these were not performed
				at the current stage because the models were
				newly trained and have yet to be internally and
				externally validated. These metrics provide a
				comprehensive assessment of each model’s ability
				to accurately classify malignant and non-malignant
				histopathological features. This study was approved
				by the Ethics Committee of the Faculty of Medicine,
				Universitas Indonesia (No: KET-121/UN2.F1/ETIK/PPM.00.02/2025).									



       

      
        RESULTS

      


			
			 

			
				In this study, 555 WSIs were initially scanned. Of
				these, 26 WSIs (4.7%) were excluded due to unsuitable
				processing, extensive hemorrhage, marked
				prostatitis, or suboptimal image quality that did not
				meet display standards, resulting in 529 digitized
				WSIs subjected to manual ROI extraction using
				ImageScope. Following the verification process, 3,828
				images were classified as non-malignant, while 195
				images were identified as malignant. Furthermore,
				26,418 image patches were generated for model
				development and evaluation. However, the final
				dataset exhibited significant class imbalance, with
				1,242 patches labeled as malignant and 25,176 patches
				labeled as non-malignant. To address this imbalance,
				data augmentation techniques, including stain-based
				augmentation, were applied to increase the number
				of malignant samples and achieve a more balanced
				distribution between classes.


				 

				
					Model performance overview

				
				Table 1 presents a comparative analysis of the
				model performance using accuracy, specificity,
				sensitivity, PPV, NPV, AUC ROC, and F1-score, with
				all metrics reported alongside their corresponding
				95% CI. Among the evaluated models, Xception,
				EfficientNetV2B0, and ConvNeXt-Tiny demonstrated
				the highest performance, each achieving perfect or
				near-perfect scores across all metrics, including an AUC
				ROC of 1.0 and an F1-score of 1, indicating robustness
				in distinguishing prostate cancer from benign cases
				within the dataset. ViT also performed exceptionally
				well, with an accuracy of 0.98, AUC ROC of 0.9992,
				and F1-score of 0.98, reflecting strong sensitivity and
				specificity in this classification task. No pre-specified
				subgroup analyses were performed; results reflect
				overall performance across the entire dataset.


				
				 

				
					
						
							Table 1.
						
						
							Test-set performance of CNN, transformer, and hybrid models for binary histopathology classification
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				In contrast, ResNet50V2, DenseNet121, and DeiT
				models showed lower performance compared with
				the other evaluated architectures. ResNet50V2
				achieved an accuracy of 0.65 and AUC ROC of 0.7242,
				while DenseNet121 reported an accuracy of 0.60
				and AUC ROC of 0.7657. The DeiT model showed
				the lowest overall performance, with an accuracy
				of 0.50 and an AUC ROC of 0.4852, indicating
				limited effectiveness for this diagnostic application.
				ResNet50 and MobileNetV2 demonstrated moderate
				performance, achieving high accuracies of 0.94 and
				0.95, respectively; however, MobileNetV2’s very low
				sensitivity suggests a tendency to miss malignant
				cases despite high overall accuracy.


				
				In addition to performance metrics, the average
				end-to-end inference time per patch was measured.
				For 512 × 512 pixel input patches, the model achieved
				an average processing time of approximately 388 ms
				per patch, including data loading, preprocessing, and
				model inference.


				
				The confusion matrices in Figure 2 complement
				the numerical metrics reported in Table 1,
				offering a visual representation of each model’s
				performance and potential misclassification risk
				in real-world diagnostic settings. Each confusion
				matrix summarizes the number of true positives,
				true negatives, false positives, and false negatives
				on the held-out test set using a fixed classification
				threshold of 0.5. Class labels included non-malignant
				and malignant. Models, such as Xception,
				EfficientNetV2B0, DeiT, and ConvNeXt-Tiny, achieved
				near-perfect classification, with negligible or zero
				misclassification errors. In contrast, models such as
				ResNet50, ResNet50V2, and DenseNet121 exhibited
				higher misclassification rates—particularly for false-positive
				and false-negative predictions—compared
				with the top-performing architectures. ViT presented
				a relatively balanced outcome with only minor
				errors. These visual patterns underscore differences
				in model behavior and robustness, particularly in
				handling borderline or ambiguous diagnostic cases.									


				
				 

				
					
					
					[image: 34-3-8312_Figure 2.]
					
				

				
					
						
							Figure 2.
						
						
							Confusion matrices illustrating the classification performance of each model on the held-out test set at a fixed threshold
							of 0.5. True labels are shown on the y-axis, predicted labels on the x-axis. Each cell represents the number of instances for the
							respective classification outcome: true positive (top left), true negative (bottom right), false positive (bottom left), false negative
							(top right). Darker shading indicates higher counts. (a) Xception; (b) EfficientNetV2B0; (c) MobileNetV2; (d) ResNet50; (e)
							ResNet50V2; (f) DenseNet121; (g) ViT; (h) DeiT; (i) ConvNeXt Tiny. DeiT=data-efficient image transformer; ViT=vision transformer						
					

				

				 

				



			 

      
        DISCUSSION

      


			
			 

			
				As part of this initiative, the RAPID framework
				incorporates state-of-the-art deep-learning models
				specifically designed for image-based medical analysis.
				One of the most widely used architectures in this domain
				is the CNN, which is a deep-learning model specifically
				designed for processing visual data, such as images
				or videos. Prior studies have shown the efficiency of
				this model in differentiating prostate cancer from BPH
				using transrectal ultrasound images.30 In parallel with
				CNN advancements, transformer-based models have
				emerged as powerful alternatives for image analysis
				tasks in medical imaging, including digital pathology.
				Originally developed for natural language processing,
				transformers apply self-attention mechanisms that
				allow them to capture long-range dependencies and
				global contextual information more effectively than
				traditional convolutional models.31 This architectural
				advantage makes transformers particularly promising
				for analyzing histopathological images, where
				spatial relationships and tissue architecture are
				critical for accurate classification.32 Recent studies
				have demonstrated the successful application of
				transformers in various cancer classification tasks,
				showing competitive or superior performance to
				CNNs.21


				
				This study evaluated and compared the
				performance of several deep-learning architectures
				for distinguishing prostate cancer from BPH using
				high-resolution histopathological images. Unlike
				prior studies that often rely on a single model or
				publicly available datasets, our research leverages
				primary data collected directly from a top Indonesian
				referral hospital with numerous prostate cancer cases
				and systematically compares the performance of
				several state-of-the-art CNN and transformer-based
				models. This comparative approach enables a more
				comprehensive evaluation of model robustness and
				generalizability for distinguishing prostate cancer from
				BPH based on histopathological images.


				
				The results demonstrated that multiple models
				achieved high diagnostic performance, with accuracy
				and AUC ROC values approaching or reaching 1.0.
				These findings underscore the promising role of AI in
				supporting the histopathological diagnosis of prostate
				lesions, consistent with previous studies.33,34 Among the
				architectures evaluated, three deep-learning models—Xception, EfficientNetV2B0, and ConvNeXT-Tiny—demonstrated outstanding classification performance,
				achieving perfect scores across all evaluation metrics
				including accuracy, sensitivity, specificity, PPV, NPV,
				AUC ROC, and F1 score. These results reflect the
				high capacity of modern convolutional and hybrid
				architectures to capture subtle morphological
				differences in histopathological images of prostate
				tissues. The performance of Xception and EfficientNetV2
				has been previously validated in medical image-classification
				tasks, showing robust feature extraction
				and generalization across datasets.25 ConvNeXt-Tiny, a newer architecture combining convolutional
				principles with transformer-inspired design, has shown
				competitive results in image recognition benchmarks,
				and this study extends its utility to histopathology.


				
				Among all the models tested, ViT stood out for
				its excellent balance between sensitivity (98.78%) and
				specificity (98.94%), with an AUC ROC of 0.9992. Unlike
				CNNs, ViT employs a self-attention mechanism that
				allows it to capture long-range spatial dependencies
				across images. This characteristic is particularly
				beneficial in prostate histopathology, where the
				architectural distribution of glands and surrounding
				stroma plays a crucial role in diagnosis.23,31 The strong
				performance of ViT suggests that transformer-based
				models may offer distinct advantages over CNNs,
				particularly in complex classification tasks involving
				subtle morphological differences. High sensitivity
				reduces the risk of false-negative cancer diagnoses
				and improves patient outcomes, while high specificity
				minimizes the risk of overdiagnosis and overtreatment
				of benign conditions. Models, such as ViT, with near-perfect
				diagnostic performance, offer strong potential
				for integration into computer-aided diagnosis systems
				to assist pathologists in routine workflow.


				
				In contrast, ResNet50V2 and DenseNet121 showed
				notably lower performance than the top-performing
				models, with AUC ROC values of 0.7242 and 0.7657,
				respectively. These models exhibited imbalanced
				sensitivity and specificity, suggesting difficulty in
				capturing the morphological diversity necessary
				for accurate classification. MobileNetV2, although
				achieving perfect specificity and PPV, had extremely
				low sensitivity (0.05%) and NPV (49.6%), resulting
				in a poor F1-score (0.33). This reflects a strong bias
				toward predicting non-malignant cases, likely owing
				to its lightweight architecture and limited feature
				extraction capability. The DeiT model performed the
				worst across nearly all metrics, with sensitivity and
				specificity values near zero, low AUC ROC (0.4852),
				and unreliable NPV. This result suggests a lack
				of stability and adaptability for this classification
				task, possibly due to insufficient domain-specific
				pretraining or architectural mismatch with patch-based
				histopathological inputs.


				
				The use of a balanced patch-based dataset
				combined with extensive image augmentation likely
				contributed to the robust performance observed
				in several models. These preprocessing strategies
				enhance generalizability and mitigate class imbalance.
				However, it is important to acknowledge the inherent
				limitations of patch-based training, particularly in the
				context of clinical practice, where histopathological
				diagnosis is conducted on entire WSIs rather than
				isolated patches. As emphasized by Campanella et al,35
				clinical-grade AI systems require validation on WSI-level
				datasets under realistic diagnostic conditions to
				ensure reliability and applicability.


				
				Clinically, the variation in model performance
				highlights the importance of selecting AI tools capable
				of accurately distinguishing between malignant and
				benign prostate tissue. High-performing models,
				such as Xception, EfficientNetV2B0, ConvNeXt-Tiny,
				and ViT, demonstrated superior ability to recognize
				significant histopathological features, including
				glandular architecture, nuclear morphology, and tissue
				organization relevant to prostate cancer diagnosis.
				Their greater diagnostic precision suggests substantial
				potential as decision-support systems, helping
				pathologists reduce interobserver variability and
				improve diagnostic reliability.


				
				In contrast, poor-performing models, including
				ResNet50V2, DenseNet121, and MobileNetV2, indicate
				the challenge of deploying general image-classification
				networks onto complex histopathological data. Such
				findings highlight that not all AI architectures are equally
				suitable for pathology, and models must be selected
				carefully for clinical translation. Ultimately, integrating
				accurate and trustworthy AI models may facilitate
				earlier detection, improve grading consistency, and
				enhance patient management in prostate cancer.


				
				The improvements observed in this study can
				be attributed to several factors. First, the use of
				advanced architectures capable of modeling complex
				morphological patterns and long-range spatial
				dependencies plays a key role. Transformer-based
				models, such as ViT, benefit from self-attention
				mechanisms, allowing them to capture global
				context critical in histopathology. Second, our data
				preprocessing pipeline, including stain normalization
				and augmentation, enhances the representation of
				malignant cases and reduces class imbalance. Third, the
				use of patch-based training preserves high-resolution
				diagnostic details while minimizing computational
				costs compared with WSI-level models. These findings
				suggest that architectures combining efficient
				convolutional strategies with global context modeling,
				such as transformers or hybrid models, are better
				suited for high-resolution pathology image analysis.
				However, translation into clinical practice still requires
				validation in full WSI contexts and implementation
				of interpretability mechanisms to ensure safe and
				trustworthy deployment.


				
				The integration of AI tools, such as the RAPID
				framework, into clinical workflows offers substantial
				potential to enhance prostate cancer diagnosis and
				management. In the broader context of pathology, the
				integration of high-performance deep-learning models,
				such as ViT, provides several practical advantages,
				including reducing interobserver variability, a well-documented
				issue in histopathological diagnosis.36 By
				providing consistent and reproducible predictions based
				on learned morphological patterns, AI models serve as
				a valuable second opinion for pathologists, enhancing
				diagnostic confidence and accuracy. Moreover, such
				models can significantly reduce diagnostic turnaround
				time by pre-screening large volumes of slides, flagging
				suspicious areas for closer inspection, and triaging
				routine cases. This is particularly relevant in settings
				with a shortage of trained pathologists or high
				workload volume. As highlighted by Steiner et al,37
				AI-based assistance systems in pathology not only
				improve efficiency but also enable broader access to
				high-quality diagnostic services across institutions
				with varying resource levels. Such tools are especially
				valuable in regions with limited access to specialized
				uropathologists.


				
				For oncology clinicians, timely and accurate
				histopathological reports are critical for determining
				treatment strategies, such as active surveillance versus
				curative therapy. AI-enhanced diagnostics may provide
				decision support for ambiguous cases, including
				atypical small acinar proliferation, borderline lesions,
				or early-stage tumors. Furthermore, integration with
				electronic medical records and radiological findings
				could enable AI to contribute to multidisciplinary
				decision-making, potentially improving patient
				stratification and treatment personalization.38
				To enable clinical adoption, AI systems should
				be embedded within existing digital pathology
				infrastructure. WSI scanners paired with AI modules
				can automate slide triage, generate alerts for atypical
				findings, and produce structured reports. These tools
				can also be implemented in remote pathology settings
				(telepathology), expanding access to expert-level
				diagnostics across underserved areas.36,39


				
				Ultimately, RAPID has the potential to enhance
				prostate cancer diagnostic workflows by providing
				decision support for pathologists and enabling clinicians
				to make timely, evidence-based decisions, as illustrated
				in Figure 3. The RAPID digital pathology pipeline begins
				with preparation of the patient’s tissue slide, followed
				by scanning and digitization into a whole-slide image.
				Then, the digital image is analyzed through an AI-integrated
				application that assists in screening and
				identifying potential pathological features. However,
				due to the multiplicity of models tested and the
				single-center derivation of this dataset, caution is
				warranted, as near-perfect results may not generalize
				to external, multi-institutional cohorts. Final diagnosis
				remains subject to expert pathologist oversight,
				integrating AI output with microscopic inspection and
				clinical judgment. Standard safety checkpoints, such
				as the ability to override AI predictions and perform
				confirmatory immunohistochemistry as needed,
				remain essential to maintain diagnostic accuracy and
				patient safety.
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							Figure 3.
						
						
							RAPID workflow for digital pathology diagnosis. (a) Patient’s glass slide; (b) whole-slide scanning to generate a digital
							WSI file; (c) AI application performs assisted screening of tissue regions; (d) pathologist reviews AI outputs together with the WSI
							to confirm the final diagnosis. AI=artificial intelligence; RAPID=role of artificial intelligence in prostate cancer intervention and
							diagnosis; WSI=whole-slide image						
					

				

				 

				


				
				Despite these promising results, this study has
				some limitations. First, while the use of Indonesian
				pathology data provides important representation
				and contextual relevance, the dataset was derived
				from a single institution with a relatively limited
				sample size, which may constrain generalizability.
				Prostatitis cases with marked inflammatory changes
				were excluded to enhance the model’s ability to
				distinguish malignant from non-malignant cases.
				Further study is needed to address this limitation.
				Additionally, the absence of blinded external
				pathology review, with both assessors from the same
				institution, may introduce bias. While data were split
				at the patient/slide level, near-perfect results warrant
				caution. Future multi-center studies will be required
				to verify robustness. External validation using
				independent multi-institutional datasets is essential
				to ensure adaptability and reliability. Prior studies
				have highlighted the importance of multi-center
				data in reducing overfitting and improving model
				performance across variations in staining protocols
				and slide scanners.35,36 Cross-center validation is critical
				to minimize institutional bias and increase confidence
				in clinical deployment.


				
				Second, deep-learning models were developed
				using transfer learning with pretrained weights from
				models originally trained on general image datasets,
				such as ImageNet.40 While transfer learning offers
				practical advantages in computational efficiency and
				faster convergence, it presents inherent limitations
				in histopathology. Pretrained feature extractors
				may not be optimally suited for capturing complex
				morphological patterns, staining variations, and
				textural characteristics specific to prostate tissue.
				Furthermore, the models were not subjected to
				extensive domain-specific fine-tuning or architectural
				customization, which may have constrained their
				capacity to fully adapt to histological features.


				
				Moreover, this study was limited by its focus on
				patch-level classification. Although patch-wise training
				improves efficiency and allows learning from localized
				features, real-world histopathological diagnosis is
				performed on entire WSIs. Therefore, the absence of
				WSI-level evaluation limits the assessment of practical
				clinical utility.


				
				Future research should explore training models
				from scratch using large-scale, diverse pathology
				datasets or applying self-supervised learning
				techniques that more effectively capture domain-specific
				features. Additionally, future work should
				aim to incorporate explainable AI methods and
				extend model evaluation to full-slide classification.
				Expanding the dataset to include larger, more diverse
				cohorts from multiple centers would enhance the
				generalizability and clinical relevance of the RAPID
				framework. User-centered evaluations of AI tools
				in live diagnostic workflows are vital for assessing
				diagnostic performance, usability, and integration
				with pathologists’ and urologists’ routines.37 Real-time
				testing can help identify operational barriers, optimize
				model interfaces, and assess the impact on diagnostic
				turnaround time, interobserver consistency, and clinical
				decision-making. Together, these efforts will support
				regulatory readiness and eventual translation of AI-based
				systems into routine prostate cancer diagnostics.
				Beyond technical validation, international surveys
				have emphasized that key enablers of AI adoption
				include regulatory approval, demonstration of clinical
				effectiveness, and training, while major barriers remain
				data privacy, accuracy, and ethical concerns.11


				
				In conclusion, the RAPID diagnostic system
				effectively distinguished prostate cancer from benign
				lesions in histopathological images using deep-learning
				models. Among the architectures evaluated,
				EfficientNetV2B0, Xception, and ConvNeXt-Tiny
				achieved perfect performance, while ViT demonstrated
				excellent diagnostic balance. These results highlight the
				effectiveness of both convolutional and transformer-based
				models in identifying key morphological features
				in prostate tissues. The RAPID framework presents a
				data-efficient and scalable approach with the potential
				to enhance diagnostic reproducibility, provide decision
				support to pathologists, and improve prostate cancer
				management.													




       

       


      
      
      Conflict of Interest

      
				Agus Rizal Ardy Hariandy Hamid is the editor-in-chief of this
				journal but was not involved in the review or decision-making process
				of the article.			

      

       

      
      Acknowledgment

      
				This research received no external funding. No funding agency
				was involved in the study design; in the collection, management,
				analysis, or interpretation of data; in manuscript preparation,
				review, or approval; or in the approval of the decision to publish the
				manuscript. The authors had complete access to all the data and
				accept responsibility for its integrity.			

		  

			 

			
			Funding Sources

			
				The authors thank PT Biogen Scientific for technical/material
				support with slide scanning. The authors also thank Anthony William
				Brian Iskandar, Darrin Ananda Nugraha, Taufiq Akmal Sungkar,
				John Christian, Salsa Billa As’syifa, Gilbert Zaini, Kang Heji Dian
				Pertiwi, and Effie Ang Supono for their assistance in extracting
				histopathology slide images using ImageScope. Nabila Husna
				Shabrina acknowledges Universitas Multimedia Nusantara for
				institutional support provided during this study. The acknowledged
				parties had no involvement in the design of the study; collection of
				data, analysis, and interpretation; preparation, review, or approval
				of the manuscript; or in the decision to submit the manuscript.			

      

      


       

       



      
      
        REFERENCES

      


       


    
				
				Ferlay J, Ervik M, Lam F, Laversanne M, Colombet M, Mery L,
				et al. Global cancer observatory: world [Internet]. International
				Agency for Research on Cancer; 2024. [cited 2025 Jul 8].
				Available from: https://gco.iarc.who.int/media/globocan/factsheets/populations/900-world-fact-sheet.pdf.
			

				 Ferlay J, Ervik M, Lam F, Laversanne M, Colombet M, Mery
				L, et al. Global cancer observatory: prostate [Internet].
				International Agency for Research on Cancer; 2024. [cited 2025
				Jul 8]. Available from: https://gco.iarc.who.int/media/globocan/factsheets/cancers/27-prostate-fact-sheet.pdf.
			

				 Ferlay J, Ervik M, Lam F, Laversanne M, Colombet M, Mery
				L, et al. Global cancer observatory: Indonesia [Internet].
				International Agency for Research on Cancer; 2024. [cited 2025
				Jul 8]. Available from: https://gco.iarc.who.int/media/globocan/factsheets/populations/360-indonesia-fact-sheet.pdf.
			

				 Ng M, Leslie SW, Baradhi KM. Benign prostatic hyperplasia.
				[Update 2023 Jun 12] In: StatPearls [Internet]. Treasure Island:
				StatPearls Publishing; 2025. Available from: https://www.ncbi.nlm.nih.gov/books/NBK558964/.
			

				 Clark R, Vesprini D, Narod SA. The effect of age on prostate
				cancer survival. Cancers. 2022;14(17):4149.
			

				 Ozkan TA, Eruyar AT, Cebeci OO, Memik O, Ozcan L, Kuskonmaz
				I. Interobserver variability in Gleason histological grading of
				prostate cancer. Scand J Urol. 2016;50(6):420–4.
			

				 Oyama T, Allsbrook WC Jr, Kurokawa K, Matsuda H, Segawa A,
				Sano T, et al. A comparison of interobserver reproducibility of
				Gleason grading of prostatic carcinoma in Japan and the United
				States. Arch Pathol Lab Med. 2005;129(8):1004–10.
			

				 Pantanowitz L, Quiroga-Garza GM, Bien L, Heled R, Laifenfeld D,
				Linhart C, et al. An artificial intelligence algorithm for prostate
				cancer diagnosis in whole slide images of core needle biopsies:
				a blinded clinical validation and deployment study. Lancet Digit
				Health. 2020;2(8):e407–16.
			

				 Goldenberg SL, Nir G, Salcudean SE. A new era: artificial
				intelligence and machine learning in prostate cancer. Nat Rev
				Urol. 2019;16(7):391–403.
			

				 Riaz IB, Harmon S, Chen Z, Naqvi SAA, Cheng L. Applications of
				artificial intelligence in prostate cancer care: a path to enhanced
				efficiency and outcomes. Am Soc Clin Oncol Educ Book.
				2024;44(3):e438516.
			

				 Ho YT, Dhalas RR, Zohair M, Deb S, Shoaib M, Elmer S, at al.
				Artificial intelligence in urology—a survey of urology healthcare
				providers. Soc Int Urol J. 2025;6(4):53.
			

				 von Elm E, Altman DG, Egger M, Pocock SJ, Gøtzsche PC,
				Vandenbroucke JP, et al. The strengthening the reporting of
				observational studies in epidemiology (STROBE) statement:
				guidelines for reporting observational studies. PLoS Med.
				2007;4(10):e296.
			

				 Bossuyt PM, Reitsma JB, Bruns DE, Gatsonis CA, Glasziou PP,
				Irwig L, et al. STARD 2015: an updated list of essential items for
				reporting diagnostic accuracy studies. BMJ. 2015;351:h5527.
			

				 Sounderajah V, Ashrafian H, Golub RM, Shetty S, De Fauw J,
				Hooft L, et al. Developing a reporting guideline for artificial
				intelligence-centred diagnostic test accuracy studies: the
				STARD-AI protocol. BMJ Open. 2021;11(6):e047709.
			

				 Maier-Hein L, Reinke A, Kozubek M, Martel AL, Arbel T,
				Eisenmann M, et al. BIAS: transparent reporting of biomedical
				image analysis challenges. Med Image Anal. 2020;66:101796.
			

				 Netto GJ, Amin MB, Berney DM, Compérat EM, Gill AJ, Hartmann
				A, et al. The 2022 World Health Organization classification of
				tumors of the urinary system and male genital organs—Part B:
				prostate and urinary tract tumors. Eur Urol. 2022;82(5):469–82.
			

				 Wu W. patchify, version 0.2.3 [Internet]. Python Package Index;
				2021. [cited 2025 Jul 8]. Available from: https://pypi.org/project/patchify/.
			

				 Otálora S, Marini N, Podareanu D, Hekster R, Tellez D, Van Der
				Laak J, et al. Stainlib: a python library for augmentation and
				normalization of histopathology H&E images. bioRxiv (Cold
				Spring Harbor Laboratory). 2022.
			

				 Iglovikov VI. albumentations, version 2.0.8 [Internet]. Python
				Package Index; 2025 [cited 2025 Jul 8]. Available from: https://pypi.org/project/albumentations/.
			

				 Macenko M, Niethammer M, Marron JS, Borland D, Woosley
				JT, Guan X, et al. A method for normalizing histology slides for
				quantitative analysis. In: Proceedings of the IEEE International
				Symposium on Biomedical Imaging: From Nano to Macro; 2009
				Jun 28–Jul 1; Boston, USA. Piscataway: IEEE; 2009. p. 1107–10.
			

				 Sarvamangala DR, Kulkarni RV. Convolutional neural networks in
				medical image understanding: a survey. Evol Intell. 2022;15(1):1–22.
			

				 Atabansi CC, Nie J, Liu H, Song Q, Yan L, Zhou X. A survey of
				transformer applications for histopathological image analysis:
				new developments and future directions. Biomed Eng Online.
				2023;22(1):96.
			

				 He K, Zhang X, Ren S, Sun J. Deep residual learning for image
				recognition. In: Proceedings of the IEEE Conference on
				Computer Vision and Pattern Recognition (CVPR); 2016 Jun 27–30; Las Vegas, USA. Piscataway: IEEE; 2016. p. 770–8.
			

				 Huang G, Liu Z, Van Der Maaten L, Weinberger KQ. Densely
				connected convolutional networks. In: Proceedings of the
				IEEE Conference on Computer Vision and Pattern Recognition
				(CVPR); 2017 Jul 21–26; Honolulu, USA. Piscataway: IEEE; 2017.
				p. 2261–9.
			

				 Howard AG, Zhu M, Chen B, Kalenichenko D, Wang W, Weyand
				T, et al. MobileNets: efficient convolutional neural networks
				for mobile vision applications [Internet]. arXiv preprint
				arXiv:1704.04861; 2017 [cited 2025 Jul 8]. Available from: https://arxiv.org/abs/1704.04861.
			

				 Tan M, Le QV. EfficientNet: rethinking model scaling for
				convolutional neural networks [Internet]. arXiv preprint
				arXiv:1905.11946; 2019 [cited 2025 Jul 8]. Available from: https://arxiv.org/abs/1905.11946.
			

				 Chollet F. Xception: Deep learning with depthwise separable
				convolutions. In: Proceedings of the IEEE Conference on
				Computer Vision and Pattern Recognition (CVPR); 2017 Jul 21–26; Honolulu, USA. Piscataway: IEEE; 2017. p. 1800–7.
			

				 Dosovitskiy A, Beyer L, Kolesnikov A, Weissenborn D, Zhai
				X, Unterthiner T, et al. An image is worth 16x16 words:
				transformers for image recognition at scale [Internet]. arXiv
				preprint arXiv:2010.11929; 2020 [cited 2025 Jul 8]. Available
				from: https://arxiv.org/abs/2010.11929.
			

				 Touvron H, Cord M, Douze M, Massa F, Sablayrolles A, Jégou H.
				Training data-efficient image transformers & distillation through
				attention [Internet]. arXiv preprint arXiv:2012.12877; 2020 [cited
				2025 Jul 8]. Available from: https://arxiv.org/abs/2012.12877.
			

				 Liu Z, Mao H, Wu CY, Feichtenhofer C, Darrell T, Xie S. A ConvNet
				for the 2020s. In: Proceedings of the IEEE/CVF Conference on
				Computer Vision and Pattern Recognition (CVPR); 2022 Jun
				19–24; New Orleans, USA. Piscataway: IEEE; 2022. p. 11966–76.
			

				 Huang TL, Lu NH, Huang YH, Twan WH, Yeh LR, Liu KY, et al.
				Transfer learning with CNNs for efficient prostate cancer
				and BPH detection in transrectal ultrasound images. Sci Rep.
				2023;13(1):21849.
			

				 Lin T, Wang Y, Liu X, Qiu X. A survey of transformers. AI Open.
				2022;3:111–32.
			

				 Xu H, Xu Q, Cong F, Kang J, Han C, Liu Z, et al. Vision transformers
				for computational histopathology. IEEE Rev Biomed Eng.
				2024;17:63–79.
			

				 Bulten W, Pinckaers H, van Boven H, Vink R, de Bel T, van
				Ginneken B, et al. Automated deep-learning system for Gleason
				grading of prostate cancer using biopsies: a diagnostic study.
				Lancet Oncol. 2020;21(2):233–41.
			

				 Otálora S, Marini N, Müller H, Atzori M. Combining weakly and
				strongly supervised learning improves strong supervision in
				Gleason pattern classification. BMC Med Imaging. 2021;21(1):77.
			

				 Chaurasia AK, Harris HC, Toohey PW, Hewitt AW. A generalised
				vision transformer-based self-supervised model for diagnosing
				and grading prostate cancer using histological images. Prostate
				Cancer Prostatic Dis. 2025;28(1):1–9.
			

				 Campanella G, Hanna MG, Geneslaw L, Miraflor A, Werneck
				Krauss Silva V, Busam KJ, et al. Clinical-grade computational
				pathology using weakly supervised deep learning on whole slide
				images. Nat Med. 2019;25(8):1301–9.
			

				 Bulten W, Kartasalo K, Chen PC, Ström P, Pinckaers H, Nagpal
				K, et al. PANDA challenge consortium. Artificial intelligence for
				diagnosis and Gleason grading of prostate cancer: the PANDA
				challenge. Nat Med. 2022;28(1):154–63.
			

				 Steiner DF, MacDonald R, Liu Y, Truszkowski P, Hipp JD,
				Gammage C, et al. Impact of deep learning assistance on the
				histopathologic review of lymph nodes for metastatic breast
				cancer. Am J Surg Pathol. 2018;42(12):1636–46.
			

				 Wang X, Yang S, Zhang J, Wang M, Zhang J, Huang J, et al.
				TransPath: Transformer-based self-supervised learning for
				histopathological image classification. In: de Bruijne M, et al,
				editors. Medical Image Computing and Computer Assisted
				Intervention – MICCAI 2021. Lecture Notes in Computer Science.
				Cham: Springer; 2021. p. 186–96.
			

				 Deng J, Dong W, Socher R, Li LJ, Li K, Fei-Fei L. ImageNet: A
				large-scale hierarchical image database. In: Proceedings of the
				IEEE Conference on Computer Vision and Pattern Recognition
				(CVPR); 2009 Jun 20–25; Miami, USA. Piscataway: IEEE; 2009. p.
				248–55.						

		


  

  

     


    
		
      
				Copyright @ 2025 Authors. This is an open access article distributed under the terms of the
				Creative Commons Attribution-NonCommercial 4.0 International License
				(http://creativecommons.org/licenses/by-nc/4.0/),
				which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original author and source are properly cited.
				For commercial use of this work, please see our terms at
				http://mji.ui.ac.id/journal/index.php/mji/copyright.
			

    

    

     


    
    
      
        Medical Journal of Indonesia
      

    

    

    
    
      mji.ui.ac.id

    

    

  

  

     

     

OEBPS/Images/34-3-8312-Figure-2.jpg
Malignant

True label

Non-malignant

Malignant

True label

Non-malignant

Malignant

True label

“a

Malignant

Malignant

Predicted

00
200
475
2500
2000
1500
4 0 100
%0

Malignant

Predicted

Predicted

Non-malignant

Non-malignant

Non-malignant

E 0§ 8 ¢ ¢

o

Malignant

True label

Non-malignant

Malignant

True label

True label

>

Non-malignant

Malignant

Non-malignant

Malignant

1

Malignant

Malignant

Predicted

Predicted

1500
000
0 3714
250
2000
1500
0 3776 1000
-x0
-0

Predicted

Non-malignant

Non-malignant

Non-malignant

300
200
250
2000
1500
1000

True label

True label

True label

Malignant

Non-malignant

Malignant

Non-malignant

Malignant

Non-malignant

3714

3774

Malignant

Malignant

Malignant

predicted  Non-malignant

3554
2851

Predicted

Predicted

Non-malignant

Non-malignant

3500
3000
2500
2000
1500
1000





OEBPS/Images/34-3-8312-Table-1.jpg
Accuracy Specificity ~ Sensitifity PPV NPV AUC ROC F1-score

Type Model () o) () (1 (c1 (cn (CI1)

1.00 1.00 1.00 1.00 1.00 1.00 1.00

3 *
Acgptian (1.00-1.00) (1.00-1.00) (1.00-1.00) (1.00-1.00) (1.00-1.00) (1.00-1.00) (1.00-1.00)

1.00 1.00 0.99 1.00 0.99 1.00 1.00

S *
EfficientNetV2BO*™ ; 15 1 00) (1.00-1.00) (0.99-1.00) (1.00-1.00) (0.99-1.00) (1.00-1.00) (1.00-1.00)

MobileNetV2 0.95 1.00 <0.01 1.00 0.50 0.64 0.33
(0.94-1.00 (1.00-1.00) (0.00-0.00) (1.00-1.00) (0.48-0.51) (0.63-0.66) (0.31-0.36)
CNN
ResNet50 0.94 0.86 1.00 0.88 1.00 0.99 0.94
(0.92-0.96) (0.85-0.87) (1.00-1.00) (0.87-89) (1.00-1.00) (0.99-1.00) (0.92-0.96)
ResNet50V2 0.65 0.33 0.96 0.59 0.89 0.72 0.60
(0.64-0.66) (0.32-0.34) (0.97-0.97) (0.58-0.61) (0.88-0.91) (0.71-0.73) (0.59-0.61)
DersENEELL 0.60 0.95 0.25 0.83 0.55 0.76 0.54
(0.59-0.61) (0.94-0.96) (0.24-0.26) (0.81-0.86) (0.54-0.57) (0.75-0.78) (0.53-0.56)
ViT 0.98 0.99 0.99 0.99 0.99 0.99 0.98
(0.98-0.99) (0.99-0.99) (0.98-0.99) (0.99-0.99) (0.98-0.99) (0.99-1.00) (0.98-0.99)
Transformer
DeiT 0.50 0 Ino 0.50 NaN 0.48 0.34
(0.50-0.50) (0.00-0.00) (0.50-0.50) (0.48-0.52) (0.33-0.34)
Hybrid" ConvNeXT-Tiny* 1.00 0.99 1.00 0.99 1.00 1.00 1.00

(1.00-1.00) (0.99-1.00) (1.00-1.00) (0.99-1.00) (1.00-1.00) (1.00-1.00) (1.00-1.00)

AUC ROC=area under the receiver operating characteristic curve; CNN=convolutional neural networks; DeiT=data-efficient image transformer;
NaN=not a number; NPV=negative predictive value; PPV=positive predictive value; ViT=vision transformer
*Best metric; 'CNN architectures incorporating transformer-inspired design elements, in this study represented by ConvNeXt-Tiny





OEBPS/Images/34-3-8312-Figure-3.jpg
/

a Patient's tissue slide Scanning and digitizing slide ¢ Al-integrated app d Expert review and
assisted screening final diagnosis





OEBPS/Images/34-3-8312-Figure-1.jpg
Patch crop

Data augmentation

R e
= AR
b c
| Accuracy | I F1-score | CNN Transformer
I Sensitivity | I PPV |
| Specivicity | I NPV |
ROCAUC

A






