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				Endothelial cell (EC) senescence plays a pivotal role in aging and is essential for the
				pathomechanism of aging-related diseases. Drugs targeting cellular senescence, such
				as senolytic or senomorphic drugs, may prevent aging and age-related diseases, but
				these bullets remain undeveloped to target EC senescence. Some medicinal plants may
				have an anti-senescence property but remain undiscovered. Deep learning has become
				an emerging approach for drug discovery by simply analyzing cellular morphology-based
				deep learning. This precious tool would be useful for screening the herb
				candidate in senescent EC rejuvenescence. Of note, several medicinal plants that can
				be found in Indonesia such as Curcuma longa L., Piper retrofractum, Guazuma ulmifolia
				Lam, Centella asiatica (L.) Urb., and Garcinia mangostana L. might potentially possess
				an anti-senescence effect. This review highlighted the importance of targeting EC
				senescence, the use of deep learning for medicinal plant screening, and some potential
				anti-senescence plants originated in Indonesia.		  
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				Aging has always been a central issue globally.
				Although substantial researches have been
				conducted, the aging mechanism is still partially
				understood amidst the underdeveloped modern
				drugs.¹ Cellular senescence is pivotally involved in
				aging and age-related diseases.² In 1961, Hayflick
				and Moorhead established a concept of cellular
				senescence where primary fibroblast cells showed a
				deterioration of proliferation capacity after several
				cycles of passages, which mimics the human aging
				process.³ These senescent cells are still viable
				but have several character alterations such as
				morphological and biological functions.⁴ It induces organ
				dysfunction, organ disease, and aging phenotype in
				humans. The elimination of senescent cells may be a
				possible therapeutic for age-related diseases.⁵ Age-related
				disease is contributed by endothelial cells
				(ECs) through cellular senescence.⁴ Therefore, EC
				senescence could be a therapeutic target to prevent
				aging and age-related diseases.


			
				Medicinal plants have been traditionally used
				for over 2,000 years to treat various diseases and
				conditions such as infectious diseases,⁶ cancer,⁷
				metabolic diseases,⁸ and cardiovascular diseases
				(CVDs).⁹ Several modern commercial drugs have been
				successfully developed from medicinal herbs such as
				aspirin¹⁰ and digitalis¹¹ which have been widely used
				because of their safety and strong efficacy. Artemisinin,
				isolated from Artemisia annua L., has been successfully
				translated into malaria chemotherapy. This finding
				was awarded a Nobel prize in 2015,¹² suggesting
				that people are still enthusiastically interested in the
				potential of medicinal plants. However, some plants
				contain complex chemical compounds, including
				second metabolites, that are difficult to be identified.¹³
				To solve this issue, artificial intelligence (AI) has been
				used as a promising tool for drug discovery in cellular
				senescence through the morphological feature
				identification.¹⁴⁻¹⁶ Therefore, AI technology could
				help identify anti-aging drugs derived from medicinal
				plants. This narrative review highlighted the rationale
				for targeting EC senescence, medicinal plant screening
				strategy for anti-EC senescence using deep learning,
				and some potential medicinal plants originated in
				Indonesia for rejuvenating vascular aging.


				 

				
					Vascular aging and the impact on the diseases

				
				EC senescence has been associated with age-related
				diseases, including CVD, metabolic disease,
				and cancer, indicating the importance of targeting
				these senescent cells for preventing degenerative
				diseases, as illustrated in Figure 1. CVDs are the
				leading cause of mortality among the elderly and
				are remarkably increasing globally.¹⁷ As referred by
				Dr. William Osler,¹⁸ “man is as old as his arteries”,
				vascular aging plays a role in morbidity and mortality.
				It is characterized as an age-associated vascular
				alteration in function and structure, such as loss of
				vascular elasticity, loss of microvasculature, and
				decreased vascular blood supply.¹⁹ Importantly, it is
				accompanied by EC senescence.²⁰ As an inner layer of
				the blood vessels, EC plays several important roles in
				vascular homeostasis, such as proper nutrients and
				oxygen deliveries and vascular tone modulation.²¹
				Senescent ECs are gradually but steadily accumulated
				in aging tissues.22,23 The proliferation ability of ECs is
				essential for new vessel formation as senescent ECs
				show a decreased proliferation ability.4,24 Thus, aging-associated
				angiogenesis impairment is partly due
				to the senescence in ECs. Cellular senescence is a
				physiological stress response leading to irreversible
				cell cycle arrest. Tumor suppressor pathways, pRB/p16 and p53/p21, tightly regulate irreversible cell cycle
				arrest and cellular senescence.25,26 Genome-wide
				association studies have been used to identify the
				common variants associated with human diseases.
				Coronary artery disease is linked with the variants
				at the 9p21 locus.27,28 Interestingly, the closest genes
				include the aging-associated gene, CDKN2A, which
				encodes the CDK inhibitor, p16INK4a and the p53
				regulator, p14ARF.²⁹ Activation of the CDKN2A locus is
				observed in most senescent cells and plays a crucial
				role in their growth arrest.³⁰ Therefore, the senescent
				cell phenotype could be observed in coronary arteries
				and ECs in the atherosclerotic lesion.24,31 These
				senescent ECs show important phenotypes such as
				reduced endothelial nitric oxide synthase activity,
				enhanced oxidative stress, and the expression of
				senescence-associated secretory phenotype (SASP).³²
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							Figure 1.
						
						
							EC senescence induces age-related diseases by secreting pro-inflammatory factors. Both replicative and stress-induced
							premature (induced by oxidative stress and high glucose exposure) senescent ECs were characterized by several senescence
							markers including the unique cell morphology. Importantly, senescent EC might secrete various pro-inflammatory factors,
							called SASP, that would induce age-related diseases such as atherosclerosis, metabolic disease, and cancer. EC=endothelial cell;
							SASP=senescence-associated secretory phenotype; SA-β-Gal=senescence-associated beta-galactosidase						
					

				

				 

				

			
				High glucose conditions may accelerate a
				senescence-like state in EC.33 This raised the question
				of whether the senescent EC solely may induce age-associated
				metabolic dysfunction. Moreover, the
				senescence in EC leads to systemic insulin resistance.4
				EC senescence was detected at a cellular level at
				adipose tissue isolated from obese patients but not
				in the normoweight subjects.34 Our previous group
				and the other group have independently investigated
				the effect of senescent EC on metabolic homeostasis
				in vivo. We generated EC-specific progeroid mice by
				overexpressing the telomeric repeat-binding factor 2 in
				the dominant negative form under the Tie2 promotor
				and revealed that senescent EC-mediated pro-inflammatory
				SASP promoted postmitotic adipocyte
				senescence, thus impairing systemic metabolic
				homeostasis under a normal feeding diet by reducing
				insulin receptor substrate-1 expression in these cells.
				We also found that interleukin (IL)-1α was highly
				expressed in EC senescence. This cytokine plays as a
				master regulator for activating SASP from senescent
				EC. These data suggest the potential role of senescent
				EC-mediated IL-1α on metabolic disease development.4


			
				The incidence of cancer is increasing at an
				advanced age. However, the cancer prevalence in the
				elderly develops a dilemmatic issue since senescence
				cell is a proliferation arrest condition, indicating
				a double-edged sword of cellular senescence in
				aging.35 Likewise, the hypothesis on the impact of EC
				senescence in cancer has been dichotomized. One
				theory explained whether the senescent EC could delay
				cancer development. As reviewed here,36 senescent
				EC-mediated angiogenesis impairment was detected
				in the elderly and might likely inhibit cancer formation.
				Otherwise, neovascularization was detected in cancer,
				indicating the need for angiogenesis for cancer
				progression.37 However, cellular senescence produces
				the stoichiometry of the senescence-associated
				cytokine system, which induces carcinogenesis in
				its surrounding healthy cells.38 Moreover, Orjalo et
				al³⁹ revealed that IL-1α orchestrated SASP secreted
				from a senescent cell including IL-6 and IL-8, which
				is responsible for metaplasia in healthy cells.
				Consistently, a previous study also explained that IL-1α was highly expressed in EC senescence, suggesting
				EC senescence will promote cancer cells.4 However,
				specific investigation using EC-specific senescence
				mice is necessary to investigate further vascular aging
				in cancer development.


				 

				
				Medicinal plant screening for vascular aging
				rejuvenation by analyzing cellular morphology
				phenotype

				
				To develop a herb screening system for EC
				senescence, it is important to identify the cellular
				senescence status by well-established markers (Figure 1).²⁵ One of the most common senescence markers
				is senescence-associated beta-galactosidase (SA-β-Gal) activity staining.⁴⁰ β-galactosidase is a lysosomal
				enzyme and is highly expressed in senescent cells with
				increased lysosomal activity, but it is weakly expressed
				in proliferating cells, quiescent cells, or terminally
				differentiated cells.⁴¹ Therefore, the senescent cells
				can be differentially identified by SA-β-Gal staining.
				However, this staining has several limitations. Over
				incubation and over confluent cell may increase
				the false-positive results, which requires careful
				monitoring to detect senescent cells properly.²⁵ In
				addition, non-senescent macrophages also show SA-β-Gal activity under physiological condition,⁴² since
				high lysosomal activity plays an essential role in
				macrophage function.


				
				Irreversible cell cycle arrest is also an important
				hallmark of cellular senescence. pRb and p53 play
				a role in the cell cycle arrest of senescent cells. The
				upregulation of cyclin-dependent kinase inhibitors,
				such as p16INK4a and p21WAF1/Cip1, induces persistent
				activation of the Rb family and cell cycle arrest.25 These
				markers are widely used for estimating the degree
				of senescence.4,24 As with the SA-β-Gal assay, p16 is
				highly expressed in some non-senescent cells such as
				macrophage and mesenchymal cells.42,43


				
				Cellular senescence may induce chronic
				inflammation and damage their surrounding healthy
				tissues through SASP that consists of various humoral
				factors including cytokines, chemokines, growth
				factors, and extracellular vesicles secreted from
				senescent cells.³⁸ Coppé et al,44,45 firstly identified
				SASP in culture conditioned medium of senescent
				cells. Recently, the senescence-associated secretory
				communication network can also be evaluated in
				human plasma and subsequently can be a therapeutic
				target for senescence cells.⁴⁶


				
				Among those markers, no single marker is likely
				to be used as the gold standard for identifying the
				senescent cell. However, most senescent cells, including
				ECs, have typical cellular morphology, characterized by
				the flattened and enlarged form independently from
				the younger ones.4,24 Interestingly, any stress-induced
				senescence also shows the typical cellular morphology
				in EC.4,24,31 When the senescent cells become larger,
				the ratio between DNA and cytoplasm is decreased.
				This imbalance would lead to uncoupling RNA and
				protein synthesis from cell volume, which contributes
				to damaged cellular function in senescent cells.⁴⁷
				Altogether, these evidence show that recognizing the
				senescence cells phenotype through analyzing their
				unique morphological features will be the easiest and
				most attractive way to identify EC senescence.


			
				AI technology has been widely used in the medical
				field. The machine learning approach, as one of the
				advanced methods in AI, can be used as a promising
				tool for drug discovery with an anti-aging effect using
				image data cells.48–50 Moreover, this method does
				not require a high facility or high cost.⁵¹ We have
				previously developed a deep learning system for
				drug screening for EC senescence.¹⁶ This system could
				identify senescent cells, and a quantitative scoring
				system based on the established network could
				evaluate the state of ECs. Briefly, we initially trained
				the deep learning system, called convolutional neural
				networks, with the microscopic images of young and
				senescent ECs. The senescent ECs were treated with
				various compounds from the drug library for the drug
				screening procedure. Each cell image was captured
				and compared to differentiate either the senescent or
				younger cells. The senescence score of each candidate
				compound was calculated and further selected
				as the potential anti-senescent drug candidates.
				Subsequently, we validated those candidates in the EC
				senescence by analyzing various senescence markers
				of those cells (Figure 2).¹⁶
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							Figure 2.
						
						
							Deep learning system development for drug screening for EC senescence. A deep learning system (CNN) was initially
							trained with every single image of young or senescent ECs. Moreover, EC senescence was incubated with various compounds
							from the drug library and analyzed with the pre-trained CNN. The machine would further calculate the senescence score for each
							compound. The lower senescence scores would be identified as the candidate for anti-senescence drugs and validated in the EC
							senescence with several senescence marker analyses. CNN=convolutional neural network; EC=endothelial cell

							This system was adapted and had granted permission from Kusumoto D, Seki T, Sawada H, Kunitomi A, Katsuki T, Kimura M, et al.
							Anti-senescent drug screening by deep learning-based morphology senescence scoring. Nat Commun. 2021;12:257						
					

				

				 

				

			
				High-throughput screening is an ideal large-scale
				screening assay to discover a novel natural product
				with anti-aging properties.⁵² An accumulative research
				indicated that there should be some medicinal plants
				with a strong anti-senescent effect.⁵³ However, it
				remains challenging to identify the anti-senescence
				effect in medicinal plants. Several concerns that should
				be addressed are the guidelines on identifying medicinal
				plant candidates, key molecules, including secondary
				metabolites (if any) within those medicinal plants, and
				the number of medicinal plants documented in the
				medicinal plant library.53,54 Although some trials have
				identified the key molecule in medicinal plants for the
				pharmacologic target, it mostly remains unclear which
				molecules have therapeutic effects. It is still difficult to
				determine the specific molecules within the medicinal
				plants.¹³ These issues are important to develop a modern
				type of anti-senescence drugs derived from medicinal
				plants. Alternatively, instead of investigating the key
				molecules from the plants, identifying the transition of
				cellular morphology after medicinal plants’ exposure to
				senescent EC by simply using AI will be a promising tool
				for medicinal plant screening in these senescent cells.¹⁶


				 

				
				The potential medicinal plants with the “anti-EC
				senescence” effect

				
				Natural product-derived medicines have been
				historically practiced. Commiphora myrrha (T.Nees)
				Engl had been documented as a medicine for cough
				and cold with anti-inflammatory properties in the
				Mesopotamia era and is still used in the community.55
				In ancient documents, Sumerians used willow bark
				or Salix purpurea L. as an anti-inflammatory medicine
				for rheumatic disease.56 Importantly, Johann Buchner
				purified its active ingredient and named it salicin in
				1828 and later found as an anti-inflammatory and antipyretic drug
				by Thomas Maclagan in 1874.57,58 A pharmaceutical
				company chemically synthesized acetylsalicylic acid,
				also known as aspirin, by acetylating the salicylic
				acid isolated from meadowsweet leaves; and later
				John Vane figured out how aspirin works as anti-inflammatory
				reagents by inactivating cyclooxygenase
				(COX) that produces prostaglandin (PG).59 Afterward,
				aspirin became the most famous and common drug
				based on its potent analgesic and antipyretic effects
				and is currently being widely used as an antithrombotic
				agent for cerebrocardiovascular disease.10 Previous
				reports showed that COX/PGE2 axis-mediated
				inflammation would induce senescence, and aspirin
				may be used as an anti-senescence drug.60–62 However,
				a clinical study suggested that aspirin did not
				prolong the survival rate in older healthy adults.63,64


			
				Metformin is a long-lasting first-line drug for type
				2 diabetes mellitus (T2DM). Among several types of
				anti-diabetic drugs, metformin has been widely used
				for several advantages, including good efficacy, less
				severe side effects, inexpensiveness, and availability
				in most countries.65 Metformin mainly improves insulin
				sensitivity and suppresses hepatic gluconeogenesis,
				and it mechanistically inhibits the mitochondrial
				respiratory chain complex 1 and activates AMP-activated
				protein kinase (AMPK).66 The cardiovascular
				benefits of metformin have been widely shown
				in T2DM patients.67 Metformin also shows several
				potentials in non-CVDs such as fibrotic lung disease,68
				cancer,69,70 and neurodegenerative disease.71,72 These
				data indicate the potential role of metformin in health
				span improvement. Interestingly, several studies
				also showed that metformin prolonged the lifespan
				in animal models.73 In terms of the human lifespan,
				a retrospective study of metformin or sulfonylurea
				medication in T2DM patients showed lower mortality
				rates in metformin groups than those treated with
				sulfonylurea.74 Importantly, a multicenter, double-blind,
				and randomized clinical trial (targeting aging
				with metformin trial) was conducted to identify the
				longevity effect of metformin on nondiabetic older
				subjects.75


			
				In Southeast Asia, Indonesia has an abundance of
				biodiversity, consisting of the heterogeneous flora and
				fauna collection spreading out in up to 17,000 islands in
				the country.⁷⁶ Of note, Indonesia is the second country
				with the highest amount of authentic medicinal
				plants after the Amazon rain forests.⁷⁷ As with the
				undeveloped area, the exploration of indigenous
				medicinal plants from Indonesia would be a potential
				drug for several diseases. In this section, we introduced
				some herbs that would potentially possess an anti-senescent
				effect (Table 1).


				
				 

				
					
						
							Table 1.
						
						
							The potential Indonesian medicinal herbs with anti-senescence effect
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					Curcuma longa L.

				
				Curcuma longa L. or turmeric is traditionally used
				mainly in Southeast and East Asia as the main source
				of active compound curcumin. Curcumin has a wide
				variety of effects, such as inflammation,78 cancer,79 and
				metabolic diseases,80 possibly due to their antioxidant
				and anti-inflammatory properties. It improves the
				degree of atherosclerosis and extends the lifespan
				in experimental animals.81,82 Importantly, curcumin is
				unlikely to induce senescence in cancer cells,83,84 which
				suggests that it can be used as an anti-senescent drug
				for humans without severe side effects.


				 

				
					Javanese long pepper

				
				Javanese long pepper (Piper retrofractum Vahl.)
				or cabe Jawa in Indonesian is a medicinal herb that
				originated in Indonesia. Instead of the seasoning
				purpose, the abundant antioxidant property was
				used for various diseases including obesity and
				hepatoprotection.85 Piperlongumine, one of the active
				compounds in long pepper, has been potentially
				identified as a senolytic agent that selectively eliminates
				senescent cells. Piperlongumine induces apoptosis
				in senescent cells induced by various stimuli.86,87 This
				compound is relatively safe and has good efficacy when
				administrated orally.


				 

				
					Guazuma ulmifolia Lam.

				
				Guazuma ulmifolia Lam., known as mutamba (or
				daun jati Belanda in Indonesian), is a traditional herb
				medicine in South America and Asia.88 This plant
				contains proanthocyanidin as phenolic compounds
				and shows an anti-hypertensive effect.88 Likewise,
				proanthocyanidin plays an emerging role in cellular
				senescence. Proanthocyanidin extracted from grape
				seed prevents senescence induced by oxidative
				stress.89,90 Otherwise, proanthocyanidin isolated from
				persimmon prevents cellular senescence induced by
				H₂O₂.⁹¹


				 

				
					Centella asiatica (L.) Urb.

				
				Centella asiatica (L.) Urb. or gotu kola is a
				medicinal plant cultivated in tropical regions. It has
				been traditionally used since 3,000 years ago and has
				been widely recognized in recent years.92 C. asiatica
				contains triterpenoids, such as asiaticoside, asiatic
				acid, madecassoside, and madecassic acid. This herb
				has been widely investigated in several diseases, such
				as skin diseases, diabetic neuropathy, and vascular
				cognitive impairment.93 Two independent studies
				investigated the effect of C. asiatica in the senescent
				human fibroblasts induced by oxidative stress
				treatment showed that both single or combination
				treatment with Moringa oleifera Lam. ameliorated
				oxidative exposure, thus preventing the senescence
				phenotype in those cells.94,95


				 

				
					Garcinia mangostana L.

				
				Garcinia mangostana L. or mangosteen is widely
				discovered in Southeast Asia. The native Indonesians
				have practically used it for fever, wound healing, and
				diarrhea.8 Mangosteen produces several xanthones
				as secondary metabolites. Among them, alpha (α)-
				and gamma (γ)-mangostin are dominantly found
				in this purple fruit.96 The α-mangostin efficiently
				increases apoptosis in cancer and fibrotic cells.97,98 This
				compound may also improve the pathologic findings
				in hypertension, dyslipidemia, obesity, and diabetes.8
				A single report showed that α-mangostin rejuvenated
				hyperglycemia-induced premature senescent EC by
				modulating sirtuin 1 and AMPK signaling,55 indicating
				the emerging role of α-mangostin in EC senescence.


			
				In conclusion, ECs play a critical role in aging and
				age-related diseases, and EC senescence can be a
				target for drug discovery. Medicinal plants have been
				historically practiced during human civilization and
				possess a strong potential for various diseases. The
				deep learning-based cellular morphology approach
				could open new insight into drug discovery, particularly
				in identifying the unexplored medicinal plants as a
				novel anti-senescence drug. Therefore, the discovery
				of herbal drugs targeting cellular senescence may
				prevent aging and age-related diseases in the future.
				Several medicinal plants originated in Indonesia
				such as Curcuma longa L. (turmeric), Piper retrofractum
				Vahl. (Javanese long pepper), Guazuma ulmifolia Lam.
				(mutamba/daun jati Belanda), Centella asiatica (L.) Urb.
				(gotu kola), and Garcinia mangostana L. (mangosteen)
				might have an anti-senescence property in the EC
				senescence effect. However, advanced research
				is needed to investigate those candidate plants in
				senescent EC in the future.																					
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