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ABSTRACT

BACKGROUND In prostate cancer (PCa) diagnosis, many developed machine learning
(ML) models using ultrasound images show good accuracy. This study aimed to analyze
the accuracy of neural network ML models in PCa diagnosis using ultrasound images.

METHODS The protocol was registered with PROSPERO registration number
CRD42021277309. Three reviewers independently conducted a literature search in 5
online databases (PubMed, EBSCO, Proquest, ScienceDirect, and Scopus). We included
all cohort, case-control, and cross-sectional studies in English, that used neural
networks ML models for PCa diagnosis in humans. Conference/review articles and
studies with combination examination with magnetic resonance imaging or had no
diagnostic parameters were excluded.

RESULTS Of 391 titles and abstracts screened, 9 articles relevant to the study were
included. Risk of bias analysis was conducted using the QUADAS-2 tool. Of the 9
articles, 5 used artificial neural networks, 1 used deep learning, 1 used recurrent neural
networks, and 2 used convolutional neural networks. The included articles showed
a varied area under the curve (AUC) of 0.76-0.98. Factors affecting the accuracy of
artificial intelligence (Al) were the Al model, mode and type of transrectal sonography,
Gleason grading, and prostate-specific antigen level.

CONCLUSIONS The accuracy of neural network ML models in PCa diagnosis using
ultrasound images was relatively high, with an AUC value above 0.7. Thus, this modality
is promising for PCa diagnosis that can provide instant information for further workup
and help doctors decide whether to perform a prostate biopsy.

KEYWORDS artificial intelligence, machine learning, neural network model, prostate
cancer, ultrasonography

Prostate cancer (PCa) is the third most common
cancer globally and the second most common in men.’
It significantly affects male health, and early detection
facilitates curative treatment and reduces disease
morbidity and mortality.>3

Ultrasonography has a potential for PCa
imaging because it is cost-effective, practical, and
widely available.# However, standard transrectal
ultrasound (TRUS) alone is not reliable due to its
low sensitivity and specificity in detecting PCa.’ The

current gold standard for PCa detection is a prostate
biopsy performed under TRUS guidance.>>%” While
ultrasonography is widely available, TRUS can be less
comfortable for patients than the transabdominal
approach. The best instruments currently available
yield inaccurate results. More accurate diagnostic
instruments are required to effectively detect
disorders. Technological advancements, such as
artificial intelligence (Al), may help overcome these
challenges.®9
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Al is a revolutionary technology in the healthcare
field that is gaining interest. Neural networks, such as
artificial neural networks (ANNs), convolutional neural
networks (CNNs), and recurrent neural networks
(RNNs), are machine learning (ML) models that mimic
human biological neurons. For PCa, Al has been shown
to aid in standardized pathological grading to guide
cancer stratification and treatment. Nitta et al and
Djavan et al" applied ML models to predict PCa based
on prostate-specific antigen (PSA) concentrations.
ML tended to be superior to conventional methods,
with a region-wise area under the receiver operating
characteristic curve (ROC-AUCQ) value ranging from
0.63 t0 0.91.

The accuracy of ML based on data from
ultrasonography as the primary modality has been
debated. Thus, this review aimed to analyze the
accuracy of neural networks trained on ultrasound
images for PCa diagnosis.

METHODS

Protocol registration

The protocol for this systematic review was
registered with PROSPERO registration number
CRD42021277309.

Sihotang, et al. | Machine learning and prostate cancer 113

Search strategy

Three reviewers (RCS, CA, and FH) independently
conducted a literature search of five online databases
on January 13, 2023. The databases were PubMed,
EBSCO, ProQuest, ScienceDirect, and Scopus. The
following keywords with various combinations were
used: “Prostate Cancer,” “Machine Learning OR Neural
Network,” “Diagnosis,” and “Ultrasonography” (Figure
1). The reference lists of the articles retrieved from the
literature search were also reviewed to identify other
relevant studies.

Study selection and data extraction

All
demonstrate the application of ML to the diagnosis of
PCa were included. The literature search was limited to
publications in English without regard to the publication
date. A study was considered significant if it met the
inclusion criteria, including using human participants,
neural networks, ML models, and prostate biopsy as
the criterion for diagnosis. Cohort, case-control, and

articles that used ultrasound images to

cross-sectional studies were included. Conference or
review articles and studies that involved a combined
examination with magnetic resonance imaging (MRI)
or had no diagnostic parameters were excluded. Three
reviewers (RCS, CA, and FH) individually reviewed

PubMed
(n=192)

EBSCO
(n=95)

ProQuest ScienceDirect Scopus
(n=9) (n=10) (n=81)
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Figure 1. PRISMA flow diagram —
for the current study (a total
of 391 articles obtained). °
MRI=magnetic resonance imaging; %
PRISMA=Preferred Reporting Items =
for Systematic Reviews and Meta- L

Analyses

Y

Records screened (n = 328) ‘ Records excluded (n = 307):

- Conference abstracts (n = 3)

l—»

- Review articles (n = 23)

Full-text articles assessed - Irrelevant articles (n = 281)

for eligibility (n = 21)

Full-texts excluded with reasons (n = 12):
- Study in animal (n=1)

i—>

- No diagnostic analysis (n = 3)
- Combination with MRI (n = 1)
- Not using neural networks models (n = 5)

Studies included in
qualitative synthesis (n = 9)

l - No reference standard (n = 2)

Studies included in
quantitative synthesis
(meta-analysis) (n = 0)
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the titles and abstracts of the selected studies.
Disagreements were resolved through discussions
with senior reviewers until a consensus was reached.
All authors agreed with the final list of papers selected
for extraction. The Preferred Reporting Items for
Systematic Reviews and Meta-Analyses flow diagram
was used to assist in selecting the articles.

The data extracted from the included articles were
tabulated to summarize the outcomes. The data collection
points included the number of samples and participants,
ultrasound modes, ML methods, system specifications,
software tools, programming languages, ML input data,
ML outcomes, and diagnostic performance. The primary
outcome was the accuracy of neural network ML models
for PCa diagnosis. Additionally, the neural network
models were compared with other ML models; we
compared their available diagnostic performance data,
including sensitivity, specificity, positive predictive value
(PPV), negative predictive value (NPV), and ROC-AUC. The
receiver operating characteristic is a graph showing the
performance of a classification model at all classification
thresholds to determine its accuracy. The area under
the curve (AUQ) is the probability that a classifier ranks
a randomly selected positive example more highly than
a randomly selected negative example. Based on the
test, an AUC of 0.5 indicates the inability to distinguish
between patients with and without disease or condition,
0.7-0.8 is acceptable, 0.8-0.9 is considered excellent, and
>0.9 is outstanding.

Risk of bias assessment

The methodological quality of the research was
independently evaluated by three reviewers (RCS,

Table 1. Risk of bias assessment using the QUADAS-2 tool

CA, and FH) using the QUADAS-2 tool in the Review
Manager software version 5.4 (Cochrane, United
Kingdom) for Mac. The reviewers were not blinded to
the identities of the authors of the articles, journals,
and publishers. Based on the questions in the
QUADAS-2 tool, the risks of bias were categorized as
high, unclear, and low.

RESULTS

Of the 391 retrieved articles, only 9 met the
inclusion criteria (Figure 1). The quality assessment
of the included articles is shown in Table 1 using the
QUADAS-2 tool. Several articles included in the analysis
had an unclear or high risk of bias. Unclear risk of bias
was common for the index test parameters due to
the unclear threshold of the index test. Meanwhile,
a high risk of bias was also common because the
interpretation was limited to standard results in
several articles.”

The characteristics of each study are presented
in Table 2.7%° Five studies used an ANN, one used
deep learning (DL), one used an RNN, and two used
a CNN. Nine of the included studies had a cross-
sectional design. All studies examined adult males
with an unknown age range owing to unclear data.
The sample sizes ranged from 48 to 1,151 patients;
however, the studies by Ronco and Fernandez™
and Akatsuka et al® only provided the number of
cases. Five studies used TRUS data only for the input
parameters, whereas the others used a combination
of input data from clinical findings. All studies showed
various accuracy analysis parameters, including

Risk of bias Applicability concerns

First author, year Patient Index test Reference Flow and Patient Index test Reference

selection standard timing selection standard
Akatsuka,**2022 Low High Low Low Low Unclear Low
Azizi,*” 2018 Unclear Unclear Low Low Low Unclear Low
Hassan,* 2022 High High Low Low Unclear Unclear Low
Lee,’> 2006 Low Unclear Low Low Low Low Low
Lee,'® 2010 Low Unclear Low Low Low Unclear Low
Loch,** 1999 Unclear Low Low Low Low Low Low
Lorusso,?° 2023 Unclear Low Low Low Unclear Low Low
E::nc:nzr;j,“ 1999 Unclear High Low Low Unclear High Low
Wildeboer,*¥2020 Low Unclear Low Low Low Unclear Low
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AUC, PPV, NPV, sensitivity, and specificity (Table 2).
However, Loch et al“ only used percentages. The
performance results are presented in Table 2. Due to
the varied parameters, a quantitative analysis could
not be performed. Most of the studies used the AUC
as an accuracy parameter. The AUC values of all the
studies were greater than 0.7, ranging from 0.75 to
0.98.

DISCUSSION

Based on the included studies, the overall
accuracy of ML showed promising results. The AUC
values of nine studies were greater than 0.7, ranging
from 0.75 to 0.98. Wildeboer et al® assessed a

potential DL model based on TRUS B-mode US, shear-

wave elastography (SWE), and dynamic contrast-
enhanced ultrasound (DCE-US). The multiparametric
classifier showed an AUC of 0.90 compared with 0.75
for the best-performing individual parameters for PCa
and Gleason scores >3+4 significant PCa. This study
revealed that combinations of the available modes
were favored over a single mode. Lee et al® evaluated
the accuracies of multiple logistic regression, ANN, and
support vector machine (SVM) models in predicting
the prostate biopsy outcomes of 684 patients (214
were confirmed to have PCa). The models were
developed using the following input data: age, digital
rectal examination (DRE) findings, PSA parameters,
and TRUS findings. This study showed that image-
based clinical decision support systems (ANN and
SVM) were more accurate than multiple logistic

Table 3. Comparison of advantages and disadvantages of several ML models

ML models Advantages Disadvantages
1. Stores data over an entire network .
2. Capacity to operate with little information 1. Hardware reliant
ANN?2® - -apacity P 2. Unexplained the network’s behavior
3. Can overlook errors . .
- 3. Establishment of an appropriate network structure
4. Possesses a distributed memory system
1. Ext ly high hen it to pict . . . .
X rem.e.y 1gh accuracy when 1t comes to PICtUT® 1 'poes not encode an object’s location or orientation
ictee Ml 2. Inability to be spatially invariant with respect to the
CNN%* 2. Detects critical traits automatically and without ' U IieYj i P ¥ P
ACT TR el 3 RepFL)Jires numerous training data sets
3. Weight distribution -heq g
1. Retains all information over time and beneficial . e . . .
.I I. - v I 1. Gradient difficulties of disappearing and exploding
. for time series prediction e .
RNN " . : 2. Quite difficult to train
2. Utilizes convolutional layers with RNNs to 3. Incapable of processing extremely lengthy sequences
broaden the effective pixel neighborhood ’ P P i ylengthy seq
. . 1. Can only work in data sets that have linear relation
. 1. Works exceptionally well in small data sets y . . .
Linear . 2. Overconfidence in the logic models
tT] 2. Easy to build and comprehend " F .
regression . - 3. Can only classify dichotomous variables except
3. Analyzes model parameters in a statistical sense . IR .
multinomial linear regression
. . 1. Results, weights, and impacts of variables are harder
1. Can handle several feature spaces with less risk & : P
of overfittin to comprehend and interpret.
SVM?28:20 £ . . 2. Data’s noise significantly impacts the classification
2. Capable of classifying semi-structured and results
nstructured data well, such as texts or images y I .
Y uctu W u X imag 3. Expansive to build in a large data set environment
1. Results are simpler to comprehend and interpret. 1. Mutually exclusive classes
DT2829.30 2. Less time consuming data preparation 2. If any attribute or variable value for a non-leaf node
3. Can produce reliable classifiers that can be is absent, the algorithm will not branch.
confirmed with statistical tests 3. Less superior compared to ANN
1. A lower possibility of variance and overfitting of 1. Far more complex and expansive to build
training data, compared to DT 2. When estimating variable significance, it favors
RF282° 2. Performs well in large data sets variables or qualities that may take a large number of

. Can calculate which variables or qualities are

most significant in the categorization

3.

alternative values.
Commonly overfitting

ANN-=artificial neural network; CNN=convulotional neural network; DT=decision tree; ML=machine learning; RF=Random Forest; RNN=recurrent
neural network; SYM=support vector machine
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regression models. They evaluated the diagnostic
performance of the ANN model with and without
TRUS data. The ANN model used the primary input
data of age, PSA levels, and DRE findings. However,
with additional TRUS data, the ANN model showed
better accuracy and a higher AUC value than without
TRUS data. Azizi et al” proposed the temporal
modeling of temporal enhanced ultrasound (TeUS)
using an RNN to improve cancer detection accuracy.
The TeUS data were acquired from 157 patients during
fusion prostate biopsy. The model achieved an AUC
value of 0.96. Hassan et al® demonstrated a higher
accuracy (0.99) with a CNN (VGG-16) than with other
algorithms (Gradient Boosting, SVM, and Random
Forest). Akatsuka et al® reported an AUC of 0.835
for CNN combined with an SVM built on clinical data
and TRUS images. This was higher than the AUC for
the SVM based on only clinical data. A recent study
by Lorusso et al** demonstrated increasing sensitivity
and NPV of the ANN method using TRUS images for
higher grades of PCa.

Several factors influence the accuracies of models,
including the Al model, TRUS modes, amount of
input data, Gleason grading, and PSA concentrations.
Based on the analysis of each Al model (Table 4), two
included studies highlighted the superior diagnostic
performance of the neural network model to those
of other models.>** ANN and CNN outperformed the
other neural network models in terms of diagnostic
performance.”*™>" TRUS modes are substantially
related to the accuracy, with DCE-US/SWE/TeUS
improving the visualization and distinction of prostate
tissues over the B-mode. The amount of input data is
also important for reliable predictions by ANN models.
More complicated data will result in a more accurate
diagnosis.?»** According to Lee et al,” Wildeboer et al,®
and Akatsuka et al,® adding more complicated data
increases the AUC, corresponding to better accuracy.
Wildeboer et al® discovered a significant association
between Gleason scores of >3+4 and accuracy of DL,
but not in Gleason scores of 3+3 or 3+4. This could be
due to a bias in patient selection; tumors with scores
of 3+3 were disproportionately large for the doctors
and were excluded from the study. According to Lee
et al,’ the AUC of ANN models was consistently higher
for PSA concentrations greater than 10 ng/ml. This
could be related to the serum PSA concentrations,
corresponding to cancer extent and histological grade.>
As aresult, TRUS alone is insufficient for detecting PCa.
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However, TRUS data and its combinations with other
pertinent input data can be used for ML. Despite its
benefits, neural networks utilizing ultrasonic images
have drawbacks that can be improved, such as the
need for a large dataset for training.** Furthermore,
the quality of scans, sample collection procedures,
and human interpretation errors differ with datasets,
making it impossible to create a gold standard.**

Reading ultrasound images requires several years
of experience and training. ML has been introduced
to medical imaging to address these constraints,
speed up ultrasound picture analysis, and generate
objective disease classification. ML applications
have advanced rapidly, thus reducing the time
required to interpret a large amount of data and draw
conclusions.?® ML is an Al subfield in which computer
algorithms learn connections between data instances
for predictions.”? As previously noted, ultrasound
images are analyzed using various techniques
such as classification, regression, registration, and
segmentation. However, neural network techniques
have been found to outperform other classifiers.
Neural networks function similarly to the human brain
and can solve the limitations of regular ML. They can
combine additional variables and produce outcomes
for more complex scenarios.” A neural network can
create input data from many variables to classify
patients with PCa.

As shown in Table 3, the algorithms used to build
ML have several advantages and disadvantages.
Regardless of their differences, CNNs and ANNs are
important in the ML field.?*?” ANNs comprise multiple
layers of interconnected artificial neurons activated
by activation functions. Like traditional machine
algorithms, the neural network learns specific values
during training.?® Other prominent ML models, such as
SVM, work by adding a higher dimension to the input
to differentiate the classes.” To assess whether the
data meet the criteria, the decision tree (DT) employs
several decision logics that act similarly to flowcharts.
When numerous DTs are joined, a Random Forest
method is used to reduce the overfitting tendency of
the DT.3°

The ML field is advancing rapidly, with
corresponding hardware and software advancements.
DL has advanced significantly in recent years, owing
to data overflow and support from graphic processing
unit hardware acceleration. Various DL libraries,
including PyTorch, Keras, TensorFlow, Theano, and
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Caffe, are currently available. Neural network fusion
was recently developed to increase accuracy.’
The utilization of ML with TRUS data could have a
potential role as a diagnostic modality, especially
when MRI is unavailable. Based on current guidelines,
T2-weighted imaging remains the most useful method
for local MRI.3> However, a meta-analysis by de Rooij
et al® showed that MRI had high specificity but poor
sensitivity for local PCa staging. Its sensitivities and
specificities for extracapsular extension, seminal
vesicle invasion, and overall stage T3 detection were
0.57 (95% confidence interval [Cl] = 0.49-0.64) and
0.91 (95% Cl = 0.88-0.93), 0.58 (95% Cl = 0.47-0.68)
and 0.96 (95% Cl = 0.95-0.97), and 0.61(95% Cl = 0.54~
0.67) and 0.88 (95% Cl = 0.85-0.91), respectively. Our
findings showed that ML based on TRUS and other
relevant data can improve diagnostic performance.
Thus, it will become more affordable and easier to
diagnose PCa without MRI. Furthermore, ML based on
TRUS data can be implemented in combination with
MRI for prostate biopsy and intraoperative mapping
before robotic surgery. This will allow the surgeon to
visualize suspected lesions on the instrument display
during the procedure.

To date, no study has analyzed the cost-
effectiveness of ML for PCa diagnosis. For severe
cases of PCa, Al is used to reduce the processing time
and facilitate early detection, resulting in a superior
prognosis. Additionally, reducing the quantity of
human labor enables the service to be provided at a
reduced price compared with multiparametric MRI.34
A systematic review by Khanna et al*> reported that
Al models demonstrated significant cost savings for
medical diagnosis and treatment, and this is applicable
to PCa diagnosis.

The present study had some limitations. The major
limitations were the low to moderate quality of the
included studies and the small sample of articles. The
literature search was restricted to studies written in
English, and some articles in other languages might
have been missed. None of the studies used the same
output parameters to generate a quantitative analysis.
Additionally, most studies did not blind the diagnosis
when testing the ML models, which might have
resulted in bias. The approximate AUC and sensitivity
values of the ML models in this study were not high
and might have led to missed PCa cases among the
patients. Further advancements in ML will continue to
improve diagnostic accuracy.

mji.ui.ac.id

In conclusion, the accuracy of the neural network
models for PCa diagnosis using ultrasound images
was relatively high, with AUCs greater than 0.7. Neural
network models are promising for PCa diagnosis and
can provide instant information for further workup with
relatively high accuracy. Image-based ML models can help
doctors decide on proceeding with or deferring a prostate
biopsy. Further development of Al will be beneficial for
diagnosis, treatment evaluation, and predicting patient
prognosis. Future studies should investigate and compare
the diagnostic performance of neural networks based on
ultrasound images and MRl for PCa.

A preprint of this manuscript has previously been published (https://
www.medrxiv.org/content/10.1101/2022.02.03.22270377V1).
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