Accuracy of machine learning models using ultrasound images in prostate cancer diagnosis: a systematic review

  • Retta Catherina Sihotang Department of Urology, Faculty of Medicine, Universitas Indonesia, Cipto Mangunkusumo Hospital, Jakarta, Indonesia
  • Claudio Agustino Department of Urology, Faculty of Medicine, Universitas Indonesia, Cipto Mangunkusumo Hospital, Jakarta, Indonesia
  • Ficky Huang Department of Urology, Faculty of Medicine, Universitas Indonesia, Cipto Mangunkusumo Hospital, Jakarta, Indonesia
  • Dyandra Parikesit Urology Medical Staff Group, Universitas Indonesia, Universitas Indonesia Hospital, Depok, Indonesia https://orcid.org/0000-0001-5779-2713
  • Fakhri Rahman Department of Urology, Faculty of Medicine, Universitas Indonesia, Cipto Mangunkusumo Hospital, Jakarta, Indonesia https://orcid.org/0000-0001-6363-7218
  • Agus Rizal Ardy Hariandy Hamid Department of Urology, Faculty of Medicine, Universitas Indonesia, Cipto Mangunkusumo Hospital, Jakarta, Indonesia
Keywords: artificial intelligence, machine learning, neural network model, prostate cancer, ultrasonography
Abstract viewed: 224 times
PDF downloaded: 156 times
HTML downloaded: 52 times
EPUB downloaded: 60 times

Abstract

BACKGROUND In prostate cancer (PCa) diagnosis, many developed machine learning (ML) models using ultrasound images show good accuracy. This study aimed to analyze the accuracy of neural network ML models in PCa diagnosis using ultrasound images.

METHODS The protocol was registered with PROSPERO registration number CRD42021277309. Three reviewers independently conducted a literature search in 5 online databases (PubMed, EBSCO, Proquest, ScienceDirect, and Scopus). We included all cohort, case-control, and cross-sectional studies in English, that used neural networks ML models for PCa diagnosis in humans. Conference/review articles and studies with combination examination with magnetic resonance imaging or had no diagnostic parameters were excluded.

RESULTS Of 391 titles and abstracts screened, 9 articles relevant to the study were included. Risk of bias analysis was conducted using the QUADAS-2 tool. Of the 9 articles, 5 used artificial neural networks, 1 used deep learning, 1 used recurrent neural networks, and 2 used convolutional neural networks. The included articles showed a varied area under the curve (AUC) of 0.76–0.98. Factors affecting the accuracy of artificial intelligence (AI) were the AI model, mode and type of transrectal sonography, Gleason grading, and prostate-specific antigen level.

CONCLUSIONS The accuracy of neural network ML models in PCa diagnosis using ultrasound images was relatively high, with an AUC value above 0.7. Thus, this modality is promising for PCa diagnosis that can provide instant information for further workup and help doctors decide whether to perform a prostate biopsy.

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistic 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209-49. https://doi.org/10.3322/caac.21660

  2. Hayes JH, Barry MJ. Screening for prostate cancer with the prostate-specific antigen test: a review of current evidence. JAMA. 2014;311(11):1143-9. https://doi.org/10.1001/jama.2014.2085

  3. Naji L, Randhawa H, Sohani Z, Dennis B, Lautenbach D, Kavanagh O, et al. Digital rectal examination for prostate cancer screening in primary care: a systematic review and meta-analysis. Ann Fam Med. 2018;16(2):149-54. https://doi.org/10.1370/afm.2205

  4. Ganie FA, Wanie MS, Ganie SA, Lone H, Gani M, Mir MF, et al. Correlation of transrectal ultrasonographic findings with histopathology in prostatic cancer. J Educ Health Promot. 2014;3:38. https://doi.org/10.4103/2230-7095.113806

  5. Harvey CJ, Pilcher J, Richenberg J, Patel U, Frauscher F. Applications of transrectal ultrasound in prostate cancer. The British Journal of Radiology. 2012;85 Spec No 1(Spec Iss 1):S3-17. https://doi.org/10.1259/bjr/56357549

  6. Kretschmer A, Tilki D. Biomarkers in prostate cancer - Current clinical utility and future perspectives. Crit Rev Oncol Hematol. 2017;120:180-93. https://doi.org/10.1016/j.critrevonc.2017.11.007

  7. Bratan F, Niaf E, Melodelima C, Chesnais AL, Souchon R, Mège-Lechevallier F, et al. Influence of imaging and histological factors on prostate cancer detection and localization on multiparametric MRI: a prospective study. Eur Radiol. 2013;23(7):2019-29. https://doi.org/10.1007/s00330-013-2795-0

  8. Loeb S, Vellekoop A, Ahmed HU, Catto J, Emberton M, Nam R, et al. Systematic review of complications of prostate biopsy. Eur Urol. 2013;64:876-92. https://doi.org/10.1016/j.eururo.2013.05.049

  9. Ukimura O, Coleman JA, de la Taille A, Emberton M, Epstein JI, Freedland SJ, et al. Contemporary role of systematic prostate biopsies: indications, techniques, and implications for patient care. Eur Urol. 2013;63(2):214-30. https://doi.org/10.1016/j.eururo.2012.09.033

  10. Nitta S, Tsutsumi M, Sakka S, Endo T, Hashimoto K, Hasegawa M, et al. Machine learning methods can more efficiently predict prostate cancer compared with prostate-specific antigen density and prostate-specific antigen velocity. Prostate Int. 2019;7(3):114-8. https://doi.org/10.1016/j.prnil.2019.01.001

  11. Djavan B, Remzi M, Zlotta A, Seitz C, Snow P, Marberger M. Novel artificial neural network for early detection of prostate cancer. J Clin Oncol. 2002;20(4):921-9. https://doi.org/10.1200/JCO.2002.20.4.921

  12. Ronco AL, Fernandez R. Improving ultrasonographic diagnosis of prostate cancer with neural networks. Ultrasound Med Biol. 1999;25(5):729-33. https://doi.org/10.1016/S0301-5629(99)00011-3

  13. Akatsuka J, Numata Y, Morikawa H, Sekine T, Kayama S, Mikami H, et al. A data-driven ultrasound approach discriminates pathological high grade prostate cancer. Sci Rep. 2022;12(860). https://doi.org/10.1038/s41598-022-04951-3

  14. Loch T, Leuschner I, Genberg C, Weichert-Jacobsen K, Küppers F, Yfantis E, et al. Artificial neural network analysis (ANNA) of prostatic transrectal ultrasound. Prostate. 1999;39(3):198-204. https://doi.org/10.1002/(SICI)1097-0045(19990515)39:3<198::AID-PROS8>3.0.CO;2-X

  15. Lee HJ, Kim KG, Lee SE, Byun SS, Hwang SI, Jung SI, et al. Role of transrectal ultrasonography in the prediction of prostate cancer: artificial neural network analysis. J Ultrasound Med. 2006;25(7):815-21. https://doi.org/10.7863/jum.2006.25.7.815

  16. Lee HJ, Hwang SI, Han SM, Park SH, Kim SH, Cho JY, et al. Image-based clinical decision support for transrectal ultrasound in the diagnosis of prostate cancer: comparison of multiple logistic regression, artificial neural network, and support vector machine. Eur Radiol. 2010;20(6):1476-84. https://doi.org/10.1007/s00330-009-1686-x

  17. Azizi S, Bayat S, Yan P, Tahmasebi A, Kwak JT, Xu S, et al. Deep recurrent neural networks for prostate cancer detection: analysis of temporal enhanced ultrasound. IEEE Trans Med Imaging. 2018;37(12):2695-703. https://doi.org/10.1109/TMI.2018.2849959

  18. Wildeboer RR, Mannaerts CK, van Sloun RJG, Budäus L, Tilki D, Wijkstra H, et al. Automated multiparametric localization of prostate cancer based on B-mode, shear-wave elastography, and contrast-enhanced ultrasound radiomics. Eur Radiol. 2020;30(2):806-15. https://doi.org/10.1007/s00330-019-06436-w

  19. Hassan R, Islam F, Uddin Z, Ghoshal G, Hassan MM, Huda S, et al. Prostate cancer classification from ultrasound and MRI images using deep learning based explainable artificial intelligence. Future Gener Comput Syst. 2022;127:462-72. https://doi.org/10.1016/j.future.2021.09.030

  20. Lorusso V, Kabre B, Pignot G, Branger N, Pacchetti A, Thomassin-Piana J, et al. External validation of the computerized analysis of TRUS of the prostate with the ANNA/C-TRUS system: a potential role of artificial intelligence for improving prostate cancer detection. World J Urol. 2023;41(3):619-25. https://doi.org/10.1007/s00345-022-03965-w

  21. Noorbakhsh-Sabet N, Zand R, Zhang Y, Abedi V. Artificial Intelligence Transforms the Future Healthcare. Am J Med. 2019;132(7):795-801. https://doi.org/10.1016/j.amjmed.2019.01.017

  22. Alaloul WS, Qureshi AH. Data processing using artificial neural networks. Dynamic data assimilation - beating the uncertainties. IntechOpen; 2020.

  23. Carter HB. Differentiation of lethal and non-lethal prostate cancer: PSA and PSA isoforms and kinetics. Asian J Androl. 2012;14(3):355-60. https://doi.org/10.1038/aja.2011.141

  24. Pai RK, Van Booven DJ, Parmar M, Lokeshwar SD, Shah K, Ramasamy R, et al. A review of current advancements and limitations of artificial intelligence in genitourinary cancers. Am J Clin Exp Urol. 2020;8(5):152-62.

  25. Shahid N, Rappon T, Berta W. Application of artificial neural networks in health care organizational decision-making: a scoping review. PLos One. 2019;14(2):e0212356. https://doi.org/10.1371/journal.pone.0212356

  26. Brattain LJ, Telfer BA, Dhyani M, Grajo JR, Samir AE. Machine learning for medical ultrasound: status, method, and future opportunities. Abdom Radiol (NY). 2018;43(4):786-99. https://doi.org/10.1007/s00261-018-1517-0

  27. Alzubaidi L, Zhang J, Humaidi AJ, Al-Dujaili A, Duan Y, Al-Shamma O, et al. Review of deep learning: concepts, CNN architectures, challenges, applications, future directions. J Big Data. 2021;8(1):53. https://doi.org/10.1186/s40537-021-00444-8

  28. Li B, He Y. An attention mechanism oriented hybrid CNN-RNN deep learning architecture of container terminal liner handling conditions prediction. Comput Intell Neurosci. 2021;2021: 3846078. https://doi.org/10.1155/2021/3846078

  29. Uddin S, Khan A, Hossain ME, Moni MA. Comparing different supervised machine learning algorithms for disease prediction. BMC Med Inform Decis Mak. 2019;281(19):281. https://doi.org/10.1186/s12911-019-1004-8

  30. Juarez-Orozco LE, Martinez-Manzanera O, Nesterov SV, Kajander S, Knuut J. The machine learning horizon in cardiac hybrid imaging. European J Hybrid Imaging. 2018;15(2):1-15. https://doi.org/10.1186/s41824-018-0033-3

  31. Dhawale CA, Dhawale K. Current trends in deep learning frameworks with opportunities and future prospectus. Adv Electr Comput Eng. 2020;63-77. https://doi.org/10.4018/978-1-7998-1159-6.ch003

  32. Mottet N, van den Bergh RCN, Briers E, Van den Broeck T, Cumberbatch MG, De Santis M, et al. EAU-EANM-ESTRO-ESUR-SIOG guidelines on prostate cancer-2020 update. Part 1: screening, diagnosis, and local treatment with curative intent. Eur Urol. 2021;79(2):243-62. https://doi.org/10.1016/j.eururo.2020.09.042

  33. de Rooij M, Hamoen EH, Witjes JA, Barentsz JO, Rovers MM. Accuracy of magnetic resonance imaging for local staging of prostate cancer: a diagnostic meta-analysis. Eur Urol. 2016;70(2):233-45. https://doi.org/10.1016/j.eururo.2015.07.029

  34. Rabaan AA, Bakhrebah M A, AlSaihati H, Alhumaid S, Alsubki RA, Turkistani SA, et al. Artificial intelligence for clinical diagnosis and treatment of prostate cancer. Cancers. 2022;14(22):5595. https://doi.org/10.3390/cancers14225595

  35. Khanna NN, Maindarkar MA, Viswanathan V, Fernandes JFE, Paul S, Bhagawati M, et al. Economics of artificial intelligence in healthcare: diagnosis vs. treatment. Healthcare (Basel). 2022;10(12):2493. https://doi.org/10.3390/healthcare10122493

Published
2023-10-20
How to Cite
1.
Sihotang RC, Agustino C, Huang F, Parikesit D, Rahman F, Hamid ARAH. Accuracy of machine learning models using ultrasound images in prostate cancer diagnosis: a systematic review. Med J Indones [Internet]. 2023Oct.20 [cited 2024May22];32(2):112-21. Available from: http://mji.ui.ac.id/journal/index.php/mji/article/view/6765
Section
Clinical Research

Most read articles by the same author(s)