Rapid advancement in cancer genomic big data in the pursuit of precision oncology

Keywords: cancer genetic database, oncology, personalized medicine
Abstract viewed: 962 times
PDF downloaded: 646 times
HTML downloaded: 177 times
EPUB downloaded: 132 times


In the current big data era, massive genomic cancer data are available for open access from anywhere in the world. They are obtained from popular platforms, such as The Cancer Genome Atlas, which provides genetic information from clinical samples, and Cancer Cell Line Encyclopedia, which offers genomic data of cancer cell lines. For convenient analysis, user-friendly tools, such as the Tumor Immune Estimation Resource (TIMER), which can be used to analyze tumor-infiltrating immune cells comprehensively, are also emerging. In clinical practice, clinical sequencing has been recommended for patients with cancer in many countries. Despite its many challenges, it enables the application of precision medicine, especially in medical oncology. In this review, several efforts devoted to accomplishing precision oncology and applying big data for use in Indonesia are discussed. Utilizing open access genomic data in writing research articles is also described.


Download data is not yet available.


  1. The Economist. The world's most valuable resource is no longer oil, but data [Internet]. The Economist; 2017 [cited 2018 Aug 25]. Available from: https://www.economist.com/leaders/2017/05/06/the-worlds-most-valuable-resource-is-no-longer-oil-but-data.

  2. Hinkson IV, Davidsen TM, Klemm JD, Chandramouliswaran I, Kerlavage AR, Kibbe WA. A comprehensive infrastructure for big data in cancer research : accelerating cancer research and precision medicine. Front Cell Dev Biol. 2017;5:108. https://doi.org/10.3389/fcell.2017.00083

  3. Stephens ZD, Lee SY, Faghri F, Campbell RH, Zhai C, Efron MJ, et al. Big data : astronomical or genomical ? PLoS Biol. 2015;13(7):e1002195. https://doi.org/10.1371/journal.pbio.1002195

  4. Cancer Genome Atlas Research Network, Weinstein JN, Collisson EA, Mills GB, Shaw KR, Ozenberger BA, et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat Genet. 2013;45(10):1113-20. https://doi.org/10.1038/ng.2764

  5. Tomczak K, Czerwińska P, Wiznerowicz M. The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge. Contemp Oncol. 2015;19(1A):A68-77. https://doi.org/10.5114/wo.2014.47136

  6. National Cancer Institute. The Cancer Genome Atlas: Program Overview [Internet]. 2016 [cited 2018 Aug 20]. Available from: https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga.

  7. Bailey MH, Tokheim C, Porta-Pardo E, Sengupta S, Bertrand D, Weerasinghe A, et al. Comprehensive characterization of cancer driver genes and mutations. Cell. 2018;173(2):371-85.e18. https://doi.org/10.1016/j.cell.2018.02.060

  8. Sanchez-Vega F, Mina M, Armenia J, Chatila WK, Luna A, La KC, et al. Oncogenic signaling pathways in The Cancer Genome Atlas. Cell. 2018;173(2):321-37.e10. https://doi.org/10.1016/j.cell.2018.03.035

  9. Liu J, Lichtenberg T, Hoadley KA, Poisson LM, Lazar AJ, Cherniack AD, et al. An Integrated TCGA Pan-Cancer clinical data resource to drive high-quality survival outcome analytics. Cell. 2018;173(2):400-16.e11. https://doi.org/10.1016/j.cell.2018.02.052

  10. Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin AA, Kim S, et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature. 2012;483(7391):603-7. https://doi.org/10.1038/nature11003

  11. Permata TB, Hagiwara Y, Sato H, Yasuhara T, Oike T, Gondhowiardjo S, et al. Base excision repair regulates PD-L1 expression in cancer cells. Oncogene. 2019;38:4452-66. https://doi.org/10.1038/s41388-019-0733-6

  12. Sato H, Niimi A, Yasuhara T, Permata TB, Hagiwara Y, Isono M, et al. DNA double-strand break repair pathway regulates PD-L1 expression in cancer cells. Nat Commun. 2017;8:1751. https://doi.org/10.1038/s41467-017-01883-9

  13. Pan D, Kobayashi A, Jiang P, de Andrade LF, Tay RE, Luoma AM, et al. A major chromatin regulator determines resistance of tumor cells to T cell-mediated killing. Science. 2018;359(6377):770-5. https://doi.org/10.1126/science.aao1710

  14. Shen J, Ju Z, Zhao W, Wang L, Peng Y, Ge Z, et al. ARID1A deficiency promotes mutability and potentiates therapeutic antitumor immunity unleashed by immune checkpoint blockade. Nat Med. 2018;24(5):556-62. https://doi.org/10.1038/s41591-018-0012-z

  15. Nuryadi E, Sasaki Y, Hagiwara Y, Permata TB, Sato H, Komatsu S, et al. Mutational analysis of uterine cervical cancer that survived multiple rounds of radiotherapy. Oncotarget. 2018;9(66):32642-52. https://doi.org/10.18632/oncotarget.25982

  16. Cortes-Ciriano I, Lee S, Park WY, Kim TM, Park PJ. A molecular portrait of microsatellite instability across multiple cancers. Nat Commun. 2017;8:15180. https://doi.org/10.1038/ncomms15180

  17. Lee HJ, Palm J, Grimes SM, Ji HP. The Cancer Genome Atlas Clinical Explorer: a web and mobile interface for identifying clinical-genomic driver associations. Genome Med. 2015;7:112. https://doi.org/10.1186/s13073-015-0226-3

  18. Chin L, Andersen JN, Futreal PA. Cancer genomics: from discovery science to personalized medicine. Nat Med. 2011;17(3):297-303. https://doi.org/10.1038/nm.2323

  19. Dancey JE, Bedard PL, Onetto N, Hudson TJ. The genetic basis for cancer treatment decisions. Cell. 2012;148(3):409-20. https://doi.org/10.1016/j.cell.2012.01.014

  20. Li T, Fan J, Wang B, Traugh N, Chen Q, Liu JS, et al. TIMER: a web server for comprehensive analysis of tumor-infiltrating immune cells. Cancer Res. 2017;77(21):e108-10. https://doi.org/10.1158/0008-5472.CAN-17-0307

  21. Li B, Severson E, Pignon JC, Zhao H, Li T, Novak J, et al. Comprehensive analyses of tumor immunity: implications for cancer immunotherapy. Genome Biol. 2016;17(1):174. https://doi.org/10.1186/s13059-016-1028-7

  22. Zhang J, Bajari R, Andri D, Gerthoffert F, Lepsa A, Nahal-Bose H, et al. The International Cancer Genome Consortium data portal. Nat Biotech. 2019;37:367-9. https://doi.org/10.1038/s41587-019-0055-9

  23. Permata TB, Utami IG, Gondhowiardjo S. Towards precison oncology and the need for Asian cancer genomic big data. In: FARO 3rd Annual Meeting: Cancer free world, making it a reality. Shenzhen: Federations of Asian Radiation Oncology (FARO); 2019.

  24. Nuryadi E, Permata TB, Komatsu S, Oike T, Nakano T. Inter-assay precision of clonogenic assays for radiosensitivity in cancer cell line A549. Oncotarget. 2018;9(17):13706-12. https://doi.org/10.18632/oncotarget.24448

  25. Hodson R. Precision medicine. Nature. 2016;537:S49. https://doi.org/10.1038/537S49a

  26. Kohno T. Implementation of "clinical sequencing" in cancer genome medicine in Japan. Cancer Sci. 2018;109(3):507-12. https://doi.org/10.1111/cas.13486

  27. Saito M, Momma T, Kono K. Targeted therapy according to next generation sequencing - based panel sequencing. Fukushima J Med Sci. 2018;64(1)9-14. https://doi.org/10.5387/fms.2018-02

How to Cite
Permata TBM, Sekarutami SM, Nuryadi E, Giselvania A, Gondhowiardjo S. Rapid advancement in cancer genomic big data in the pursuit of precision oncology. Med J Indones [Internet]. 2021Jan.13 [cited 2024Jul.25];30(1):81–5. Available from: https://mji.ui.ac.id/journal/index.php/mji/article/view/4250
Review Article

Most read articles by the same author(s)