Efficacy of cilostazol in promoting the maturation of newly created arteriovenous fistula in patients with end-stage renal disease: a systematic review and meta-analysis

  • Herick Alvenus Willim dr. Agoesdjam Hospital, Ketapang Regency, Indonesia
  • Erica Sugandi Landak Hospital, Landak Regency, Indonesia
  • Rosa dr. Abdul Aziz Hospital, Singkawang, Indonesia
  • Alvin Ariyanto Sani Department of Cardiothoracic and Vascular Surgery, dr. Soedarso Hospital, Pontianak, Indonesia
  • Hengky Khouw Department of Cardiothoracic and Vascular Surgery, dr. Soedarso Hospital, Pontianak, Indonesia
Keywords: arteriovenous fistula, cilostazol, end-stage renal disease, hemodialysis
Abstract viewed: 0 times
PDF downloaded: 0 times
HTML downloaded: 0 times
EPUB downloaded: 0 times


BACKGROUND Arteriovenous fistula (AVF) is considered the gold standard for vascular access in hemodialysis. However, achieving the successful maturation of AVF remains a challenge. Cilostazol, a phosphodiesterase-3 inhibitor, has shown promise in enhancing AVF maturation. This study aimed to assess the clinical efficacy of cilostazol in promoting AVF maturation.

METHODS This meta-analysis was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. A comprehensive systematic literature search was performed using PubMed, ScienceDirect, Cochrane Library, ProQuest, and Google Scholar to identify studies investigating the efficacy of cilostazol on the maturation of newly created AVF in patients with end-stage renal disease and published up to August 2023. The intervention group received perioperative cilostazol therapy, while the control group did not receive cilostazol. The outcomes were the maturation rate of AVF and AVF-related complications. Meta-analysis was conducted using Review Manager software version 5.3.

RESULTS 5 studies involving 549 patients were included. The intervention group comprised 228 patients, while the control group comprised 321 patients. In the pooled analysis, patients in the intervention group had a significantly higher rate of AVF maturation (odds ratio [OR] = 2.18, 95% confidence interval [CI]: 1.29–3.68, p = 0.003, I2 = 47%) and a lower rate of AVF-related complications (OR = 0.46, 95% CI: 0.28–0.77, p = 0.003, I2 = 27%) compared to the control.

CONCLUSIONS Cilostazol was associated with a higher rate of AVF maturation and a lower rate of AVF-related complications.


  1. Kovesdy CP. Epidemiology of chronic kidney disease: an update 2022. Kidney Int Suppl (2011). 2022;12(1):7-11. https://doi.org/10.1016/j.kisu.2021.11.003

  2. Gusev E, Solomatina L, Zhuravleva Y, Sarapultsev A. The pathogenesis of end-stage renal disease from the standpoint of the theory of general pathological processes of inflammation. Int J Mol Sci. 2021;22(21):11453. https://doi.org/10.3390/ijms222111453

  3. Fila B, Ibeas J, Tey RR, Lovčić V, Zibar L. Arteriovenous fistula for haemodialysis: the role of surgical experience and vascular access education. Nefrologia. 2016;36(2):89-94. https://doi.org/10.1016/j.nefro.2015.07.003

  4. Miyamoto M, Kurita N, Suemitsu K, Murakami M. Fistula and survival outcomes after fistula creation among predialysis chronic kidney disease stage 5 patients. Am J Nephrol. 2017;45(4):356-64. https://doi.org/10.1159/000466707

  5. Hung TW, Wu SW, Chiou JY, Wang YH, Liao YC, Wei CC. Association of permanent vascular access dysfunction with subsequent risk of cardiovascular disease: a population-based cohort study. J Pers Med. 2022;12(4):598. https://doi.org/10.3390/jpm12040598

  6. Neyra NR, Wazir S. The evolving panorama of vascular access in the 21st century. Front Nephrol. 2022;2:917265. https://doi.org/10.3389/fneph.2022.917265

  7. Venkat Ramanan S, Prabhu RA, Rao IR, Chawla A, Shenoy SV, Nagaraju SP, et al. Outcomes and predictors of failure of arteriovenous fistulae for hemodialysis. Int Urol Nephrol. 2022;54(1):185-92. https://doi.org/10.1007/s11255-021-02908-5

  8. Pratama D, Daenuri A, Kekalih A, Darwis P, Ferian MF, Amin BF. Brachial artery and cephalic vein diameter as maturation predictors of brachiocephalic arteriovenous fistula in end-stage renal diseases with type 2 diabetes mellitus. Bali Med J. 2022;11(3):1375-9. https://doi.org/10.15562/bmj.v11i3.3573

  9. Yap YS, Chi WC, Lin CH, Liu YC, Wu YW. Association of early failure of arteriovenous fistula with mortality in hemodialysis patients. Sci Rep. 2021;11(1):5699. https://doi.org/10.1038/s41598-021-85267-6

  10. Cheng Q, Zhao YJ. The reasons for the failure of the primary arteriovenous fistula surgery in patients with end-stage renal disease. J Vasc Access. 2015;16 Suppl 10:S74-7. Erratum in: J Vasc Access. 2016;17(1):101. https://doi.org/10.5301/jva.5000424

  11. Tozzi M, Gallieni M. Antiplatelet therapy for prevention of hemodialysis vascular access thrombosis and improving survival. J Nephrol. 2019;32(4):491-93. https://doi.org/10.1007/s40620-019-00598-y

  12. Kim CH, Oh HJ, Kim YS, Kim YL, Chang JH, Ryu DR. The effect of aspirin on preventing vascular access dysfunction in incident hemodialysis patients: a prospective cohort study in Korean Clinical Research Centers for End-Stage Renal Disease (CRC for ESRD). J Clin Med. 2019;8(5):677. https://doi.org/10.3390/jcm8050677

  13. Fan PY, Lee CC, Liu SH, Li IJ, Weng CH, Tu KH, et al. Preventing arteriovenous shunt failure in hemodialysis patients: a population-based cohort study. J Thromb Haemost. 2019;17(1):77-87. https://doi.org/10.1111/jth.14347

  14. Lee T, Ul Haq N. New developments in our understanding of neointimal hyperplasia. Adv Chronic Kidney Dis. 2015;22(6):431-7. https://doi.org/10.1053/j.ackd.2015.06.010

  15. Ma S, Duan S, Liu Y, Wang H. Intimal hyperplasia of arteriovenous fistula. Ann Vasc Surg. 2022;85:444-53. https://doi.org/10.1016/j.avsg.2022.04.030

  16. Chancharoenthana W, Leelahavanichkul A, Taratummarat S, Wongphom J, Tiranathanagul K, Eiam-Ong S. Cilostazol attenuates intimal hyperplasia in a mouse model of chronic kidney disease. PLoS One. 2017;12(12):e0187872. https://doi.org/10.1371/journal.pone.0187872

  17. Moher D, Liberati A, Tetzlaff J, Altman DG; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6(7):e1000097. https://doi.org/10.1371/journal.pmed.1000097

  18. Jadad AR, Moore RA, Carroll D, Jenkinson C, Reynolds DJ, Gavaghan DJ, et al. Assessing the quality of reports of randomized clinical trials: is blinding necessary? Control Clin Trials. 1996;17(1):1-12. https://doi.org/10.1016/0197-2456(95)00134-4

  19. Wells GA, Shea B, O'Connell D, Peterson J, Welch V, Losos M, et al. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses [Internet]. 2011 [cited 2023 Oct 2]. Available from: http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp.

  20. Kazemzadeh G, Izadi M, Zargar FS, Kermani FS, Toloueitabar Y, Saberi A. Impact of cilostazol on maturation rate and patency of the arteriovenous fistula in patients with hemodialysis. Vasc Access. 2022;16(3):30-6.

  21. Jeon JW, Kim HR, Lee E, Lee JI, Ham YR, Na KR, et al. Effect of cilostazol on arteriovenous fistula in hemodialysis patients. Nefrologia (Engl Ed). 2021:S0211-6995(21)00060-6. English, Spanish.

  22. Türkyilmaz S, Kavala AA. [The effect of cilostazol on early period patency and fistula maturation in arteriovenous fistula in the patients with chronic renal failure using cilostazol due to peripheral artery disease]. Turk Klin J Med Sci. 2018;38(2):129-35. Turkish. https://doi.org/10.5336/medsci.2018-60055

  23. Russell TE, Kasper GC, Seiwert AJ, Comerota AJ, Lurie F. Cilostazol may improve maturation rates and durability of vascular access for hemodialysis. Vasc Endovascular Surg. 2017;51(3):120-4. https://doi.org/10.1177/1538574417692464

  24. Kim JS, Choi MK, Choi BK, Lee HS, Lee N, Son J, et al. Can cilostazol improve the patency rate of native arteriovenous fistula in hemodialysis patients? Korean J Nephrol. 2010;29(4):474-81.

  25. Schinstock CA, Albright RC, Williams AW, Dillon JJ, Bergstralh EJ, Jenson BM, et al. Outcomes of arteriovenous fistula creation after the Fistula First Initiative. Clin J Am Soc Nephrol. 2011;6(8):1996-2002. https://doi.org/10.2215/CJN.11251210

  26. Brooke BS, Griffin CL, Kraiss LW, Kim J, Nelson R. Cost-effectiveness of repeated interventions on failing arteriovenous fistulas. J Vasc Surg. 2019;70(5):1620-8. https://doi.org/10.1016/j.jvs.2019.01.085

  27. Gupta A, Kumar V, Peswani AR, Suresh A. Outcomes of arteriovenous fistula creation in patients undergoing hemodialysis: an Indian experience. Cureus. 2022;14(1):e20921. https://doi.org/10.7759/cureus.20921

  28. Marques MG, Ponce P. Pre-operative assessment for arteriovenous fistula placement for dialysis. Semin Dial. 2017;30(1):58-62. https://doi.org/10.1111/sdi.12561

  29. Wen M, Li Z, Li J, Zhou W, Liu Y, Liu H, et al. Risk factors for primary arteriovenous fistula dysfunction in hemodialysis patients: a retrospective survival analysis in multiple medical centers. Blood Purif. 2019;48(3):276-82. https://doi.org/10.1159/000500045

  30. Siddiqui MA, Ashraff S, Carline T. Maturation of arteriovenous fistula: analysis of key factors. Kidney Res Clin Pract. 2017;36(4):318-28. https://doi.org/10.23876/j.krcp.2017.36.4.318

  31. Tsukada H, Nakamura M, Mizuno T, Satoh N, Nangaku M. Pharmaceutical prevention strategy for arteriovenous fistula and arteriovenous graft failure. Ren Replace Ther. 2019;5:22. https://doi.org/10.1186/s41100-019-0210-2

  32. Lu DY, Chen EY, Wong DJ, Yamamoto K, Protack CD, Williams WT, et al. Vein graft adaptation and fistula maturation in the arterial environment. J Surg Res. 2014;188(1):162-73. https://doi.org/10.1016/j.jss.2014.01.042

  33. Hu H, Patel S, Hanisch JJ, Santana JM, Hashimoto T, Bai H, et al. Future research directions to improve fistula maturation and reduce access failure. Semin Vasc Surg. 2016;29(4):153-71. https://doi.org/10.1053/j.semvascsurg.2016.08.005

  34. Yang CY, Li MC, Lan CW, Lee WJ, Lee CJ, Wu CH, et al. The anastomotic angle of hemodialysis arteriovenous fistula is associated with flow disturbance at the venous stenosis location on angiography. Front Bioeng Biotechnol. 2020;8:846. https://doi.org/10.3389/fbioe.2020.00846

  35. Laboyrie SL, de Vries MR, Bijkerk R, Rotmans JI. Building a scaffold for arteriovenous fistula maturation: unravelling the role of the extracellular matrix. Int J Mol Sci. 2023;24(13):10825. https://doi.org/10.3390/ijms241310825

  36. Roy-Chaudhury P, Arend L, Zhang J, Krishnamoorthy M, Wang Y, Banerjee R, et al. Neointimal hyperplasia in early arteriovenous fistula failure. Am J Kidney Dis. 2007;50(5):782-90. https://doi.org/10.1053/j.ajkd.2007.07.019

  37. Wong CY, de Vries MR, Wang Y, van der Vorst JR, Vahrmeijer AL, van Zonneveld AJ, et al. Vascular remodeling and intimal hyperplasia in a novel murine model of arteriovenous fistula failure. J Vasc Surg. 2014;59(1):192-201.e1. https://doi.org/10.1016/j.jvs.2013.02.242

  38. Vazquez-Padron RI, Martinez L, Duque JC, Salman LH, Tabbara M. The anatomical sources of neointimal cells in the arteriovenous fistula. J Vasc Access. 2023;24(1):99-106. https://doi.org/10.1177/11297298211011875

  39. Browne LD, Bashar K, Griffin P, Kavanagh EG, Walsh SR, Walsh MT. The role of shear stress in arteriovenous fistula maturation and failure: a systematic review. PLoS One. 2015;10(12):e0145795. https://doi.org/10.1371/journal.pone.0145795

  40. Alpers CE, Imrey PB, Hudkins KL, Wietecha TA, Radeva M, Allon M, et al. Histopathology of veins obtained at hemodialysis arteriovenous fistula creation surgery. J Am Soc Nephrol. 2017;28(10):3076-88. https://doi.org/10.1681/ASN.2016050598

  41. Lozano-Corona R, Laparra-Escareno H, Anaya-Ayala JE, Zentella-Dehesa A, Baquera-Heredia JJ, Argüero-Sánchez R, et al. Cilostazol as a noninferiority pharmacologic option to paclitaxel in early intimal hyperplasia inhibition after venous balloon angioplasty in a rabbit model: a preliminary study. JVS Vasc Sci. 2020;1:200-6. https://doi.org/10.1016/j.jvssci.2020.09.003

  42. Mizuno T, Nakamura M, Satoh N, Tsukada H, Matsumoto A, Hamasaki Y, et al. Patency with antiplatelet treatment after vascular access intervention therapy: a retrospective observational study. Ren Replace Ther. 2018;4:43. https://doi.org/10.1186/s41100-018-0184-5

  43. Kherallah RY, Khawaja M, Olson M, Angiolillo D, Birnbaum Y. Cilostazol: a review of basic mechanisms and clinical uses. Cardiovasc Drugs Ther. 2022;36(4):777-92. https://doi.org/10.1007/s10557-021-07187-x

  44. Jackson AJ, Coats P, Kingsmore DB. Pharmacotherapy to improve outcomes in vascular access surgery: a review of current treatment strategies. Nephrol Dial Transplant. 2012;27(5):2005-16. https://doi.org/10.1093/ndt/gfr552

  45. Chen WJ, Chen YH, Lin KH, Ting CH, Yeh YH. Cilostazol promotes vascular smooth muscles cell differentiation through the cAMP response element-binding protein-dependent pathway. Arterioscler Thromb Vasc Biol. 2011;31(9):2106-13. https://doi.org/10.1161/ATVBAHA.111.230987

  46. Karagöz U, Bilen Ç, Erdal AC. Inhibitory effect of cilostazol on intimal hyperplasia and smooth muscle cell proliferation in a rabbit carotid artery anastomosis model. Cardiovasc Surg Int. 2023;10(2):103-8. https://doi.org/10.5606/e-cvsi.2023.1481

How to Cite
Willim HA, Sugandi E, Rosa, Sani AA, Khouw H. Efficacy of cilostazol in promoting the maturation of newly created arteriovenous fistula in patients with end-stage renal disease: a systematic review and meta-analysis. Med J Indones [Internet]. 2024Apr.16 [cited 2024May22];33(1):35-1. Available from: https://mji.ui.ac.id/journal/index.php/mji/article/view/7252
Clinical Research