Extracorporeal shockwave therapy in managing lower urinary tract dysfunction: a scoping review

Authors

  • Yoshimi Handayani Physical Medicine and Rehabilitation Residency Program, Faculty of Medicine, Universitas Indonesia, Cipto Mangunkusumo Hospital, Jakarta, Indonesia
  • Amanda Yufika Physical Medicine and Rehabilitation Residency Program, Faculty of Medicine, Universitas Indonesia, Cipto Mangunkusumo Hospital, Jakarta, Indonesia
  • Lazulfa Inda Lestari Faculty of Medicine, Univesitas Lampung, Bandar Lampung, Indonesia
  • Steven Setiono Department of Physical Medicine and Rehabilitation, Faculty of Medicine, Universitas Indonesia, Cipto Mangunkusumo Hospital, Jakarta, Indonesia

DOI:

https://doi.org/10.13181/mji.rev.257696

Keywords:

extracorporeal shockwave therapy, neurogenic bladder, urologic diseases

Abstract

Extracorporeal shockwave therapy (ESWT) exerts a range of biological effects, including anti-inflammatory, immunomodulatory, angiogenic, proliferative, and differential responses, as well as promoting nerve regeneration, enhancing membrane permeability, inducing stem cell attraction, and triggering the release of exosomes. It facilitates both interstitial and extracellular responses that support tissue regeneration by transferring energy into tissues. It may also reduce pain through hyperstimulation analgesia and attenuate inflammatory responses, making it a promising non invasive approach for various lower urinary tract dysfunction (LUTD) conditions, such as underactive bladder, overactive bladder, chronic pelvic pain syndrome, stress urinary incontinence, and interstitial cystitis. This study aimed to explore the efficacy and mechanisms of ESWT in managing LUTD.

Downloads

Download data is not yet available.

References

McDonough RC 3rd, Ryan ST. Diagnosis and management of lower urinary tract dysfunction. Surg Clin North Am. 2016;96(3):441−52. https://doi.org/10.1016/j.suc.2016.02.003

Lee PJ, Kuo HC. High incidence of lower urinary tract dysfunction in women with recurrent urinary tract infections. Low Urin Tract Symptoms. 2020;12(1):33−40. https://doi.org/10.1111/luts.12280

Clemens JQ, Wiseman JB, Smith AR, Amundsen CL, Yang CC, Bradley MS, et al. Prevalence, subtypes, and correlates of nocturia in the symptoms of Lower Urinary Tract Dysfunction Research Network cohort. Neurourol Urodyn. 2020;39(4):1098−107. https://doi.org/10.1002/nau.24338

Przydacz M, Gasowski J, Grodzicki T, Chlosta P. Lower urinary tract symptoms and overactive bladder in a large cohort of older poles-a representative tele-survey. J Clin Med. 2023;12(8):2859. https://doi.org/10.3390/jcm12082859

Agarwal A, Eryuzlu LN, Cartwright R, Thorlund K, Tammela TL, Guyatt GH, et al. What is the most bothersome lower urinary tract symptom? Individual- and population-level perspectives for both men and women. Eur Urol. 2014;65(6):1211−7. https://doi.org/10.1016/j.eururo.2014.01.019

Simplicio CL, Purita J, Murrell W, Santos GS, Dos Santos RG, Lana JF. Extracorporeal shock wave therapy mechanisms in musculoskeletal regenerative medicine. J Clin Orthop Trauma. 2020;11(Suppl 3):S309−18. https://doi.org/10.1016/j.jcot.2020.02.004

Weninger P, Thallinger C, Chytilek M, Hanel Y, Steffel C, Karimi R, et al. Extracorporeal shockwave therapy improves outcome after primary anterior cruciate ligament reconstruction with hamstring tendons. J Clin Med. 2023;12(10):3350. https://doi.org/10.3390/jcm12103350

Guo J, Hai H, Ma Y. Application of extracorporeal shock wave therapy in nervous system diseases: a review. Front Neurol. 2022;13:963849. https://doi.org/10.3389/fneur.2022.963849

Wang B, Reed-Maldonado AB, Ly K, lin G, Lue TF. Potential applications of low-intensity extracorporeal shock-wave therapy in urological diseases via activation of tissue resident stem cells. Urol Sci. 2022;33(1):3−8. https://doi.org/10.4103/UROS.UROS_56_21

de Lima Morais TM, Meyer PF, de Vasconcellos LS, E Silva JC, E Andrade IF, de Farias VA, et al. Effects of the extracorporeal shock wave therapy on the skin: an experimental study. Lasers Med Sci. 2019;34(2):389−96. https://doi.org/10.1007/s10103-018-2612-8

Liu WC, Chen CT, Lu CC, Tsai YC, Liu YC, Hsu CW, et al. Extracorporeal shock wave therapy shows superiority over injections for pain relief and grip strength recovery in lateral epicondylitis: a systematic review and network meta-analysis. Arthroscopy. 2022;38(6):2018−34.e12. https://doi.org/10.1016/j.arthro.2022.01.025

Chuang YC, Huang TL, Tyagi P, Huang CC. Urodynamic and immunohistochemical evaluation of intravesical botulinum toxin a delivery using low energy shock waves. J Urol. 2016;196(2):599−608. https://doi.org/10.1016/j.juro.2015.12.078

Nageib M, El-Hefnawy AS, Zahran MH, El-Tabey NA, Sheir KZ, Shokeir AA. Delivery of intravesical botulinum toxin A using low-energy shockwaves in the treatment of overactive bladder: a preliminary clinical study. Arab J Urol. 2019;17(3):216−20. https://doi.org/10.1080/2090598X.2019.1605676

Ryskalin L, Morucci G, Natale G, Soldani P, Gesi M. Molecular mechanisms underlying the pain-relieving effects of extracorporeal shock wave therapy: a focus on fascia nociceptors. Life (Basel). 2022;12(5):743. https://doi.org/10.3390/life12050743

Chen PY, Cheng JH, Wu ZS, Chuang YC. New frontiers of extracorporeal shock wave medicine in urology from bench to clinical studies. Biomedicines. 2022;10(3):675. https://doi.org/10.3390/biomedicines10030675

Auersperg V, Trieb K. Extracorporeal shock wave therapy: an update. EFORT Open Rev. 2020;5(10):584−92. https://doi.org/10.1302/2058-5241.5.190067

Rompe JD, Kirkpatrick CJ, Küllmer K, Schwitalle M, Krischek O. Dose-related effects of shock waves on rabbit tendo achillis. A sonographic and histological study. J Bone Joint Surg Br. 1998;80(3):546−52. https://doi.org/10.1302/0301-620X.80B3.0800546

Poenaru D, Sandulescu MI, Cinteza D. Biological effects of extracorporeal shockwave therapy in tendons: a systematic review. Biomed Rep. 2022;18(2):15. https://doi.org/10.3892/br.2022.1597

Bannuru RR, Flavin NE, Vaysbrot E, Harvey W, McAlindon T. High-energy extracorporeal shock-wave therapy for treating chronic calcific tendinitis of the shoulder: a systematic review. Ann Intern Med. 2014;160(8):542−9. https://doi.org/10.7326/M13-1982

Crevenna R, Mickel M, Schuhfried O, Gesslbauer C, Zdravkovic A, Keilani M. Focused extracorporeal shockwave therapy in physical medicine and rehabilitation. Curr Phys Med Rehabil Rep. 2021;9:1−10. https://doi.org/10.1007/s40141-020-00306-z

Santilli G, Ioppolo F, Mangone M, Agostini F, Bernetti A, Forleo S, et al. High versus low-energy extracorporeal shockwave therapy for chronic lateral epicondylitis: a retrospective study. J Funct Morphol Kinesiol. 2024;9(3):173. https://doi.org/10.3390/jfmk9030173

Chen YL, Lin YP, Sun CK, Huang TH, Yip HK, Chen YT. Extracorporeal shockwave against inflammation mediated by GPR120 receptor in cyclophosphamide-induced rat cystitis model. Mol Med. 2018;24(1):60. https://doi.org/10.1186/s10020-018-0062-1

Chen Y, Lyu K, Lu J, Jiang L, Zhu B, Liu X, et al. Biological response of extracorporeal shock wave therapy to tendinopathy in vivo (review). Front Vet Sci. 2022;9:851894. https://doi.org/10.3389/fvets.2022.851894

Kenmoku T, Iwakura N, Ochiai N, Saisu T, Ohtori S, Takahashi K, et al. Influence of different energy patterns on efficacy of radial shock wave therapy. J Orthop Sci. 2021;26(4):698−703. https://doi.org/10.1016/j.jos.2020.07.009

Sukubo NG, Tibalt E, Respizzi S, Locati M, d'Agostino MC. Effect of shock waves on macrophages: a possible role in tissue regeneration and remodeling. Int J Surg. 2015;24(Pt B):124−30. https://doi.org/10.1016/j.ijsu.2015.07.719

Holfeld J, Tepeköylü C, Kozaryn R, Urbschat A, Zacharowski K, Grimm M, et al. Shockwave therapy differentially stimulates endothelial cells: implications on the control of inflammation via toll-like receptor 3. Inflammation. 2014;37(1):65−70. https://doi.org/10.1007/s10753-013-9712-1

Fajardo AF. Effect of extracorporeal shockwave therapy on the immunomodulatory and anti-inflammatory properties of umbilical cord blood mesenchymal stromal cells [master's thesis]. Guelph: The University of Guelph; 2023.

Chen YT, Yang CC, Sun CK, Chiang HJ, Chen YL, Sung PH, et al. Extracorporeal shock wave therapy ameliorates cyclophosphamide-induced rat acute interstitial cystitis though inhibiting inflammation and oxidative stress-in vitro and in vivo experiment studies. Am J Transl Res. 2014;6(6):631−48.

Davis TA, Stojadinovic A, Anam K, Amare M, Naik S, Peoples GE, et al. Extracorporeal shock wave therapy suppresses the early proinflammatory immune response to a severe cutaneous burn injury. Int Wound J. 2009;6(1):11−21. https://doi.org/10.1111/j.1742-481X.2008.00540.x

Wang CJ, Wang FS, Yang KD, Weng LH, Hsu CC, Huang CS, et al. Shock wave therapy induces neovascularization at the tendon-bone junction. A study in rabbits. J Orthop Res. 2003;21(6):984-9. https://doi.org/10.1016/S0736-0266(03)00104-9

Heimes D, Wiesmann N, Eckrich J, Brieger J, Mattyasovszky S, Proff P, et al. In vivo modulation of angiogenesis and immune response on a collagen matrix via extracorporeal shockwaves. Int J Mol Sci. 2020;21(20):7574. https://doi.org/10.3390/ijms21207574

Chen RF, Chang CH, Wang CT, Yang MY, Wang CJ, Kuo YR. Modulation of vascular endothelial growth factor and mitogen-activated protein kinase-related pathway involved in extracorporeal shockwave therapy accelerate diabetic wound healing. Wound Repair Regen. 2019;27(1):69−79. https://doi.org/10.1111/wrr.12686

Huang TH, Sun CK, Chen YL, Wang CJ, Yin TC, Lee MS, et al. Shock wave enhances angiogenesis through VEGFR2 activation and recycling. Mol Med. 2017;22:850−62. https://doi.org/10.2119/molmed.2016.00108

Wuerfel T, Schmitz C, Jokinen LL. The effects of the exposure of musculoskeletal tissue to extracorporeal shock waves. Biomedicines. 2022;10(5):1084. https://doi.org/10.3390/biomedicines10051084

Cai HY, Li L, Guo T, Wang YU, Ma TK, Xiao JM, et al. Cardiac shockwave therapy improves myocardial function in patients with refractory coronary artery disease by promoting VEGF and IL-8 secretion to mediate the proliferation of endothelial progenitor cells. Exp Ther Med. 2015;10(6):2410−6. https://doi.org/10.3892/etm.2015.2820

Graber M, Nägele F, Hirsch J, Pölzl L, Schweiger V, Lechner S, et al. Cardiac shockwave therapy - a novel therapy for ischemic cardiomyopathy? Front Cardiovasc Med. 2022;9:875965. https://doi.org/10.3389/fcvm.2022.875965

Weihs AM, Fuchs C, Teuschl AH, Hartinger J, Slezak P, Mittermayr R, et al. Shock wave treatment enhances cell proliferation and improves wound healing by ATP release-coupled extracellular signal-regulated kinase (ERK) activation. J Biol Chem. 2014;289(39):27090−104. https://doi.org/10.1074/jbc.M114.580936

Lee FY, Zhen YY, Yuen CM, Fan R, Chen YT, Sheu JJ, et al. The mTOR-FAK mechanotransduction signaling axis for focal adhesion maturation and cell proliferation. Am J Transl Res. 2017;9(4):1603−17.

Slezak C, Rose R, Jilge JM, Nuster R, Hercher D, Slezak P. Physical considerations for in vitro ESWT research design. Int J Mol Sci. 2021;23(1):313. https://doi.org/10.3390/ijms23010313

Hausner T, Pajer K, Halat G, Hopf R, Schmidhammer R, Redl H, et al. Improved rate of peripheral nerve regeneration induced by extracorporeal shock wave treatment in the rat. Exp Neurol. 2012;236(2):363−70. https://doi.org/10.1016/j.expneurol.2012.04.019

Peng D, Tan Y, Reed-Maldonado AB, Lin G, Lue TF. Molecular mechanism of action of low-intensity extracorporeal shockwave therapy for regenerating penile and peripheral nerves. Turk J Urol. 2020. https://doi.org/10.5152/tud.2020.20419

Lee JH, Cho SH. Effect of extracorporeal shock wave therapy on denervation atrophy and function caused by sciatic nerve injury. J Phys Ther Sci. 2013;25(9):1067−9. https://doi.org/10.1589/jpts.25.1067

Gollmann-Tepeköylü C, Nägele F, Graber M, Pölzl L, Lobenwein D, Hirsch J, et al. Shock waves promote spinal cord repair via TLR3. JCI Insight. 2020;5(15):e134552. https://doi.org/10.1172/jci.insight.134552

Wang B, Ning H, Reed-Maldonado AB, Zhou J, Ruan Y, Zhou T, et al. Low-intensity extracorporeal shock wave therapy enhances brain-derived neurotrophic factor expression through PERK/ATF4 signaling pathway. Int J Mol Sci. 2017;18(2):433. https://doi.org/10.3390/ijms18020433

Heinzel JC, Oberhauser V, Keibl C, Schädl B, Swiadek NV, Längle G, et al. ESWT diminishes axonal regeneration following repair of the rat median nerve with muscle-in-vein conduits but not after autologous nerve grafting. Biomedicines. 2022;10(8):1777. https://doi.org/10.3390/biomedicines10081777

Shen YC, Chen CH, Chancellor MB, Chuang YC. Prospective, randomized, double-blind, placebo-controlled, pilot study of extracorporeal shock wave therapy for detrusor underactivity/underactive bladder. Eur Urol Focus. 2023;9(3):524−30. https://doi.org/10.1016/j.euf.2022.11.011

Coolen RL, Groen J, Blok B. Electrical stimulation in the treatment of bladder dysfunction: technology update. Med Devices (Auckl). 2019;12:337−45. https://doi.org/10.2147/MDER.S179898

Wu WL, Bamodu OA, Wang YH, Hu SW, Tzou KY, Yeh CT, et al. Extracorporeal shockwave therapy (ESWT) alleviates pain, enhances erectile function and improves quality of life in patients with chronic prostatitis/chronic pelvic pain syndrome. J Clin Med. 2021;10(16):3602. https://doi.org/10.3390/jcm10163602

Porst H. Review of the current status of low intensity extracorporeal shockwave therapy (Li-ESWT) in erectile dysfunction (ED), Peyronie's disease (PD), and sexual rehabilitation after radical prostatectomy with special focus on technical aspects of the different marketed ESWT devices including personal experiences in 350 patients. Sex Med Rev. 2021;9(1):93−122. https://doi.org/10.1016/j.sxmr.2020.01.006

Wang HS, Oh BS, Wang B, Ruan Y, Zhou J, Banie L, et al. Low-intensity extracorporeal shockwave therapy ameliorates diabetic underactive bladder in streptozotocin-induced diabetic rats. BJU Int. 2018;122(3):490−500. https://doi.org/10.1111/bju.14216

Chuang YC, Tyagi P, Wang HJ, Huang CC, Lin CC, Chancellor MB. Urodynamic and molecular characteristics of detrusor underactivity in a rat cryoinjury model and effects of low energy shock wave therapy. Neurourol Urodyn. 2018;37(2):708−15. https://doi.org/10.1002/nau.23381

Lee YC, Chuang SM, Lin KL, Chen WC, Lu JH, Chueh KS, et al. Low-intensity extracorporeal shock wave therapy ameliorates the overactive bladder: a prospective pilot study. Biomed Res Int. 2020;2020:9175676. https://doi.org/10.1155/2020/9175676

Lu JH, Chueh KS, Chuang SM, Wu YH, Lin KL, Long CY, et al. Low intensity extracorporeal shock wave therapy as a potential treatment for overactive bladder syndrome. Biology (Basel). 2021;10(6):540. https://doi.org/10.3390/biology10060540

Lin KL, Lu JH, Chueh KS, Juan TJ, Wu BN, Chuang SM, et al. Low-intensity extracorporeal shock wave therapy promotes bladder regeneration and improves overactive bladder induced by ovarian hormone deficiency from rat animal model to human clinical trial. Int J Mol Sci. 2021;22(17):9296. https://doi.org/10.3390/ijms22179296

Zhang ZX, Zhang D, Yu XT, Ma YW. Efficacy of radial extracorporeal shock wave therapy for chronic pelvic pain syndrome: a nonrandomized controlled trial. Am J Mens Health. 2019;13(1):1557988318814663. https://doi.org/10.1177/1557988318814663

Li H, Matheu MP, Sun F, Wang L, Sanford MT, Ning H, et al. Low-energy shock wave therapy ameliorates erectile dysfunction in a pelvic neurovascular injuries rat model. J Sex Med. 2016;13(1):22−32. Erratum in: J Sex Med. 2016;13(4):732. https://doi.org/10.1016/j.jsxm.2015.11.008

Hu JC, Tzeng HT, Lee WC, Li JR, Chuang YC. Promising experimental treatment in animal models and human studies of interstitial cystitis/bladder pain syndrome. Int J Mol Sci. 2024;25(15):8015. https://doi.org/10.3390/ijms25158015

Published

2025-06-26

How to Cite

1.
Handayani Y, Yufika A, Lestari LI, Setiono S. Extracorporeal shockwave therapy in managing lower urinary tract dysfunction: a scoping review. Med J Indones [Internet]. 2025 Jun. 26 [cited 2025 Jul. 15];34(2):132-40. Available from: https://mji.ui.ac.id/journal/index.php/mji/article/view/7696

Issue

Section

Review Article