Effects of Physalis angulata extracts on bleomycin-induced rat: analysis on lung inflammation and fibrosis

Authors

  • Suryo Anggoro Kusumo Wibowo Doctoral Program in Medical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia; Department of Internal Medicine, Faculty of Medicine, Universitas Indonesia, Cipto Mangunkusumo Hospital, Jakarta, Indonesia
  • Cleopas Martin Rumende Department of Internal Medicine, Faculty of Medicine, Universitas Indonesia, Cipto Mangunkusumo Hospital, Jakarta, Indonesia
  • Harry Isbagio Department of Internal Medicine, Faculty of Medicine, Universitas Indonesia, Cipto Mangunkusumo Hospital, Jakarta, Indonesia
  • Agus Setiyono School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor, Indonesia
  • Rianto Setiabudy Department of Pharmacology and Therapeutics, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
  • Lisnawati Rachmadi Department of Pathological Anatomy, Faculty of Medicine, Universitas Indonesia, Cipto Mangunkusumo Hospital, Jakarta, Indonesia
  • Nyoman Kertia Department of Internal Medicine, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Dr. Sardjito Hospital, Yogyakarta, Indonesia

DOI:

https://doi.org/10.13181/mji.oa.257875

Keywords:

animal model, bleomycin, lung inflammation, Physalis, pulmonary fibrosis, scleroderma

Abstract

BACKGROUND Scleroderma is an immune-mediated connective tissue disease, with interstitial lung disease as one of its manifestations. Physalis angulata (P. angulata) or ciplukan has shown potential in treating fibrosis, but its role in preventing lung inflammation and fibrosis remains unknown. This study aimed to evaluate the effect of P. angulata extract in a bleomycin (BLM)-induced scleroderma rat.

METHODS Sprague-Dawley rats were divided into 6 groups. For lung inflammation prevention, 3 groups received: (1) BLM only, (2) BLM+50 mg/kgBW P. angulata, and (3) BLM+100 mg/kgBW P. angulata. After 14 days, rats were sacrificed and bronchoalveolar lavage (BAL) leukocyte count, interleukin-6 (IL-6) levels, and lung injury score were assessed. For fibrosis prevention, another 3 groups received the same interventions and were sacrificed after 51 days. Fibrosis score, fibrosis area, hydroxyproline, transforming growth factor-beta (TGF-β), and matrix metalloproteinase-13 (MMP-13) levels were analyzed. BLM was administered subcutaneously, while P. angulata was given orally for 14 days. IL-6, TGF-β, and MMP-13 were measured by ELISA and hydroxyproline by colorimetric method. Mean differences and p-values were calculated using appropriate statistical tests.

RESULTS P. angulata extract did not prevent lung inflammation, as there were no differences in BAL leukocyte count (p = 0.126), IL-6 levels (p = 0.173), or lung injury scores (p = 0.397) between the BLM-only group and those receiving P. angulata. The extract also did not prevent lung fibrosis, with no differences in fibrosis scores (p = 0.173), fibrosis area (p = 0.359), hydroxyproline (p = 0.295), TGF-β (p = 0.374), or MMP-13 (p = 0.088) levels among groups.

CONCLUSIONS P. angulata extract did not prevent the development of lung inflammation or fibrosis.

Downloads

Download data is not yet available.

References

Denton CP, Khanna D. Systemic sclerosis. Lancet. 2017;390(10103):1685−99. https://doi.org/10.1016/S0140-6736(17)30933-9

Elhai M, Meune C, Avouac J, Kahan A, Allanore Y. Trends in mortality in patients with systemic sclerosis over 40 years: a systematic review and meta-analysis of cohort studies. Rheumatology (Oxford). 2012;51(6):1017−26. https://doi.org/10.1093/rheumatology/ker269

Vonk MC, Smith V, Sfikakis PP, Cutolo M, Del Galdo F, Seibold JR. Pharmacological treatments for SSc-ILD: systematic review and critical appraisal of the evidence. Autoimmun Rev. 2021;20(12):102978. https://doi.org/10.1016/j.autrev.2021.102978

Khanna D, Tashkin DP, Denton CP, Lubell MW, Vazquez-Mateo C, Wax S. Ongoing clinical trials and treatment options for patients with systemic sclerosis-associated interstitial lung disease. Rheumatology (Oxford). 2019;58(4):567−79. https://doi.org/10.1093/rheumatology/key151

Cottin V, Spagnolo P, Bonniaud P, Dalon F, Nolin M, Kirchgässler KU, et al. Healthcare resource use and associated costs in patients receiving pirfenidone or nintedanib for idiopathic pulmonary fibrosis. Respir Med Res. 2023;83:100951. https://doi.org/10.1016/j.resmer.2022.100951

Picavet E, Souladr S, Druez C, Munack U. Market access of nintedanib for idiopathic pulmonary fibrosis: a cross-country review of access conditions. Value Health. 2017;20(9):p.A566. https://doi.org/10.1016/j.jval.2017.08.951

Rathi V, Rathi JC, Patel K, Kanojia SS, Tamizharasi S. A comprehensive review of Physalis angulata. World J Pharm Res. 2017;6(4):1503−12. https://doi.org/10.20959/wjpr20174-8251

Dewi S, Isbagio H, Purwaningsih EH, Kertia N, Setiabudy R, Setiati S. A double-blind, randomized controlled trial of Ciplukan (Physalis angulata Linn) extract on skin fibrosis, inflammatory, immunology, and fibrosis biomarkers in scleroderma patients. Acta Med Indones. 2019;51(4):303−10.

Wang T, Xu LT, Li PP, Zhang CH, Han QT, Wang XN, et al. Physalis Calyx seu Fructus inhibited pulmonary fibrosis through regulating Wnt/β-catenin signaling pathway. Phytomedicine. 2024;131:155797. https://doi.org/10.1016/j.phymed.2024.155797

Rohmawaty E, Rosdianto AM, Usman HA, Saragih WA, Zuhrotun A, Hendriani R, et al. Antifibrotic effect of the ethyl acetate fraction of ciplukan (Physalis angulata Linn.) in rat liver fibrosis induced by CCI4. J Appl Pharm Sci. 2021;11(12):175-82. https://doi.org/10.7324/JAPS.2021.1101217

Dewi S, Rohmawaty E, Rosdianto AM, Usman HA, Zuhrotun A, Hendriani R, et al. Ciplukan (Physalis angulata Linn) bioactivity against bleomycin-induced pulmonary fibrosis in mice by reducing subpleural fibrosis, KL-6 level and anti-inflammatory properties. Research J Pharm Technol. 2024;17(4):1731-40. https://doi.org/10.52711/0974-360X.2024.00275

Lam AP, Herzog EL, Melichian D, Sennello J, Gan Y, Raparia K, et al. Distinct patterns of pulmonary injury and fibrosis induced by intratracheal and subcutaneous bleomycin in the mouse: relevance for distinct forms of human lung fibrosis. In: Robertson L, editor. Cystic and idiopathic pulmonary fibrosis: risk factors, management and long-term health outcomes. New York: Nova Science Publishers; Inc. 2016;127-52.

Matute-Bello G, Downey G, Moore BB, Groshong SD, Matthay MA, Slutsky AS, et al. An official American Thoracic Society workshop report: features and measurements of experimental acute lung injury in animals. Am J Respir Cell Mol Biol. 2011;44(5):725−38. https://doi.org/10.1165/rcmb.2009-0210ST

Ashcroft T, Simpson JM, Timbrell V. Simple method of estimating severity of pulmonary fibrosis on a numerical scale. J Clin Pathol. 1988;41(4):467−70. https://doi.org/10.1136/jcp.41.4.467

Chen Y, Yu Q, Xu CB. A convenient method for quantifying collagen fibers in atherosclerotic lesions by ImageJ software. Int J Clin Exp Med. 2017;10(10):14904-10.

Qiao J, Sun S, Yuan L, Wang J. Effects of icariin on asthma mouse model are associated with regulation of prostaglandin D2 level. Allergol Immunopathol (Madr). 2017;45(6):567−72. https://doi.org/10.1016/j.aller.2017.02.007

Artlett CM. Animal models of systemic sclerosis: their utility and limitations. Open Access Rheumatol. 2014;6:65−81. https://doi.org/10.2147/OARRR.S50009

Kolb P, Upagupta C, Vierhout M, Ayaub E, Bellaye PS, Gauldie J, et al. The importance of interventional timing in the bleomycin model of pulmonary fibrosis. Eur Respir J. 2020;55(6):1901105. https://doi.org/10.1183/13993003.01105-2019

Jenkins RG, Moore BB, Chambers RC, Eickelberg O, Königshoff M, Kolb M, et al. An official American Thoracic Society workshop report: use of animal models for the preclinical assessment of potential therapies for pulmonary fibrosis. Am J Respir Cell Mol Biol. 2017;56(5):667−79. https://doi.org/10.1165/rcmb.2017-0096ST

Nihtyanova SI, Denton CP. Pathogenesis of systemic sclerosis associated interstitial lung disease. J Scleroderma Relat Disord. 2020;5(2 Suppl):6−16. https://doi.org/10.1177/2397198320903867

Khanna D, Tashkin DP, Denton CP, Renzoni EA, Desai SR, Varga J. Etiology, risk factors, and biomarkers in systemic sclerosis with interstitial lung disease. Am J Respir Crit Care Med. 2020;201(6):650−60. https://doi.org/10.1164/rccm.201903-0563CI

Zhang X, Zhang W, Chen X, Cai Y. Prevention of bleomycin-induced pulmonary inflammation and fibrosis in mice by bilobalide. Evid Based Complement Alternat Med. 2023;2023:1973163. https://doi.org/10.1155/2023/1973163

Rosa AC, Pini A, Lucarini L, Lanzi C, Veglia E, Thurmond RL, et al. Prevention of bleomycin-induced lung inflammation and fibrosis in mice by naproxen and JNJ7777120 treatment. J Pharmacol Exp Ther. 2014;351(2):308−16. https://doi.org/10.1124/jpet.114.215152

Choi EM, Hwang JK. Investigations of anti-inflammatory and antinociceptive activities of Piper cubeba, Physalis angulata and Rosa hybrida. J Ethnopharmacol. 2003;89(1):171−5. https://doi.org/10.1016/S0378-8741(03)00280-0

do Espírito Santo RF, Lima MD, Juiz PJ, Opretzka LC, Nogueira RC, Ribeiro IM, et al. Physalis angulata concentrated ethanolic extract suppresses nociception and inflammation by modulating cytokines and prostanoids pathways. Nat Prod Res. 2021;35(22):4675−9. https://doi.org/10.1080/14786419.2019.1705812

Almeida Junior LD, Quaglio AE, de Almeida Costa CA, Di Stasi LC. Intestinal anti-inflammatory activity of Ground Cherry (Physalis angulata L.) standardized CO2 phytopharmaceutical preparation. World J Gastroenterol. 2017;23(24):4369−80. https://doi.org/10.3748/wjg.v23.i24.4369

Vieceli PS, Juiz PJ, Lauria PS, Couto RD, Tomassini TC, Ribeiro IM, et al. Physalis angulata reduces the progression of chronic experimental periodontitis by immunomodulatory mechanisms. J Ethnopharmacol. 2021;273:113986. https://doi.org/10.1016/j.jep.2021.113986

Rivera DE, Ocampo YC, Castro JP, Barrios L, Diaz F, Franco LA. A screening of plants used in Colombian traditional medicine revealed the anti-inflammatory potential of Physalis angulata calyces. Saudi J Biol Sci. 2019;26(7):1758-66. https://doi.org/10.1016/j.sjbs.2018.05.030

Wiraswati HL, Ekawardhani S, Rohmawaty E, Laelalugina A, Zuhrotun A, Hendriani R, et al. Antioxidant, antiinflammation, and antifibrotic activity of Ciplukan (Physalis angulata L). extract. J Inflamm Res. 2024;17:6297−306. https://doi.org/10.2147/JIR.S470318

Chaudhary NI, Schnapp A, Park JE. Pharmacologic differentiation of inflammation and fibrosis in the rat bleomycin model. Am J Respir Crit Care Med. 2006;173(7):769−76. https://doi.org/10.1164/rccm.200505-717OC

Tan Q, Link PA, Meridew JA, Pham TX, Caporarello N, Ligresti G, et al. Spontaneous lung fibrosis resolution reveals novel antifibrotic regulators. Am J Respir Cell Mol Biol. 2021;64(4):453−64. https://doi.org/10.1165/rcmb.2020-0396OC

Wynn TA, Ramalingam TR. Mechanisms of fibrosis: therapeutic translation for fibrotic disease. Nat Med. 2012;18(7):1028−40. https://doi.org/10.1038/nm.2807

Imaduddin UK, Berbudi A, Rohmawaty E. The effect of Physalis angulata L. administration on gene expressions related to lung fibrosis resolution in mice-induced bleomycin. J Exp Pharmacol. 2024;16:49−60. https://doi.org/10.2147/JEP.S439932

Jarman ER, Khambata VS, Cope C, Jones P, Roger J, Ye LY, et al. An inhibitor of NADPH oxidase-4 attenuates established pulmonary fibrosis in a rodent disease model. Am J Respir Cell Mol Biol. 2014;50(1):158−69. https://doi.org/10.1165/rcmb.2013-0174OC

Glasser SW, Hagood JS, Wong S, Taype CA, Madala SK, Hardie WD. Mechanisms of lung fibrosis resolution. Am J Pathol. 2016;186(5):1066−77. https://doi.org/10.1016/j.ajpath.2016.01.018

Craig VJ, Zhang L, Hagood JS, Owen CA. Matrix metalloproteinases as therapeutic targets for idiopathic pulmonary fibrosis. Am J Respir Cell Mol Biol. 2015;53(5):585−600. https://doi.org/10.1165/rcmb.2015-0020TR

Liu W, Wan J, Han JZ, Li C, Feng DD, Yue SJ, et al. Antiflammin-1 attenuates bleomycin-induced pulmonary fibrosis in mice. Respir Res. 2013;14(1):101. https://doi.org/10.1186/1465-9921-14-101

Cabrera S, Maciel M, Hernández-Barrientos D, Calyeca J, Gaxiola M, Selman M, et al. Delayed resolution of bleomycin-induced pulmonary fibrosis in absence of MMP13 (collagenase 3). Am J Physiol Lung Cell Mol Physiol. 2019;316(5):L961−76. https://doi.org/10.1152/ajplung.00455.2017

Hohmann MS, Habiel DM, Coelho AL, Verri WA Jr, Hogaboam CM. Quercetin enhances ligand-induced apoptosis in senescent idiopathic pulmonary fibrosis fibroblasts and reduces lung fibrosis in vivo. Am J Respir Cell Mol Biol. 2019;60(1):28−40. https://doi.org/10.1165/rcmb.2017-0289OC

Lestari IN, Renada E, Juliana D, Iswara K, Sukmara S. [Molecular docking study of antidiabetic compounds on PPAR-γ receptors from ciplukan (Physalis angulata Linn.) plants]. Indones J Biol Pharm. 2023;3(1):1-9. Indonesian. https://doi.org/10.24198/ijbp.v3i1.43355

Zhu F, Dai C, Fu Y, Loo JF, Xia D, Gao SP, et al. Physalin A exerts anti-tumor activity in non-small cell lung cancer cell lines by suppressing JAK/STAT3 signaling. Oncotarget. 2016;7(8):9462−76. https://doi.org/10.18632/oncotarget.7051

Jun JI, Lau LF. Resolution of organ fibrosis. J Clin Invest. 2018;128(1):97−107. https://doi.org/10.1172/JCI93563

Downloads

Published

2025-12-04

How to Cite

1.
Wibowo SAK, Rumende CM, Isbagio H, Setiyono A, Setiabudy R, Rachmadi L, et al. Effects of <em>Physalis angulata</em> extracts on bleomycin-induced rat: analysis on lung inflammation and fibrosis. Med J Indones [Internet]. 2025 Dec. 4 [cited 2025 Dec. 6];1(1). Available from: https://mji.ui.ac.id/journal/index.php/mji/article/view/7875

Issue

Section

Basic Medical Research