Renal evaluation in patients with type 2 diabetes mellitus and its association with diastolic blood pressure

  • Fokine D. Anna Faculty of Medicine, Autonomous University of the State of Mexico (UAEMex). Jesús Carranza esq. Paseo Tollocan, Moderna de La Cruz, C.P. 50180, Toluca
  • Mendieta Z. Hugo Faculty of Medicine, Autonomous University of the State of Mexico (UAEMex). Jesús Carranza esq. Paseo Tollocan, Moderna de La Cruz, C.P. 50180, Toluca
  • Mendieta A.M. Ruth Diabetes Clinic, Regional Hospital “Gral. Ignacio Zaragoza", ISSSTE. General Ignacio Zaragoza 1711, Ejército Constitucionalista, Iztapalapa, 09220
Keywords: CKD-EPI, Cockcroft-Gault, MDRD, type 2 diabetes mellitus
Abstract viewed: 2808 times
PDF downloaded: 1028 times
HTML downloaded: 46 times
EPUB downloaded: 91 times


Background: HbA1c is correlated with the estimated glomerular filtration rate (eGFR) and diastolic blood pressure (DBP). Our main objective was to evaluate the trend of biochemical and clinical variables, in relation to the eGFR in patients with type 2 diabetes mellitus (T2DM).

Methods: This was a retrospective, longitudinal, and descriptive study, including patients with T2DM, who were cared for from January 2014 until December 2014, at the Clí­nica de Diabetes, Hospital Regional “Gral. Ignacio Zaragoza", ISSSTE, Mexico City, Mexico. eGFR was calculated using three formulas: the chronic kidney disease – epidemiology collaboration (CKD-EPI), Cockcroft-Gault, and modification of diet in renal disease (MDRD), during two periods of observation, 3 and 6 months. The results were compared by Student t tests or Wilcoxon-Mann-Whitney test depending on the variable distribution. Pearson correlation was employed to determine the relation between the eGFR determined with each formula and the analyzed variables.

Results: The mean age was 56.5±11.3 years in the group of 3 months’ follow-up (n=110) and 57.1±13.8 years in the group of 6 months’ follow-up (n=47). In both groups, the formula with the lowest percentages of cases of CKD was CKD-EPI and the difference of this formula had a basal and final significant positive correlation with the DBP.

Conclusion: The CKD-EPI formula showed the lowest percentages of cases of CKD in a short follow-up period, and its difference is consistently associated with the DBP, confirming the importance of controlling the later to mitigate the evolution to CKD.


  1. Gigoux LJP, Moya Rivera P, Silva RJ. Adherencia al tratamiento farmacológico y relación con el control metabólico en pacientes con DM2. Rev Chil Salud Pública. 2010;14(2-3):238–70. Mexican.

  2. Durán-Varela BR, Rivera-Chavira B, Franco-Gallegos E. [Pharmacological therapy compliance in diabetes]. Salud Publica Mex. 2001;43(3):233–6.

  3. Cruz HJ, Licea PME, Hernández GP, Abraham MEA, Yanes QM. Aldosa reductasa y proteí­na quinasa C en las complicaciones crónicas de la Diabetes Mellitus. Rev Latinoamer Patol Clin. 2011;58(2):102–7. Mexican.

  4. Vejakama P, Ingsathit A, Attia J, Thakkinstian A. Epidemiological study of chronic kidney disease progression: a large-scale population-based cohort study. Medicine (Baltimore). 2015;94(4):e475.

  5. Sharma SG, Bomback AS, Radhakrishnan J, Herlitz LC, Stokes MB, Markowitz GS, et al. The modern spectrum of renal biopsy findings in patients with diabetes. Clin J Am Soc Nephrol. 2013;8(10):1718–24.

  6. Penno G, Solini A, Bonora E, Fondelli C, Orsi E, Zerbini G, et al. Clinical significance of nonalbuminuric renal impairment in type 2 diabetes. J Hypertens. 2011;29(9):1802–9.

  7. Earley A, Miskulin D, Lamb EJ, Levey AS, Uhliq K. Estimating equations for glomerular filtration rate in the era of creatinine standardization: a systematic review. Ann Intern Med. 2012;156(11):785–95.

  8. Rigalleau V, Beauvieux MC, Gonzalez C, Raffaitin C, Lasseur C, Combe C, et al. Estimation of renal function in patients with diabetes. Diabetes Metab. 2011;37(5):359–66.

  9. Coresh J, Stevens LA. Kidney function estimating equations: where do we stand? Curr Opin Nephrol Hypertens. 2006;15(3):276–84.

  10. Levey AS, Coresh J, Greene T, Stevens LA, Zhang YL, Hendriksen S, et al. Using standardized serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular filtration rate. Ann Intern Med. 2006;145(4):247–54.

  11. Stevens LA, Schmid CH, Greene T, Zhang YL, Beck GJ, Froissart M, et al. Comparative performance of the CKD Epidemiology Collaboration (CKD-EPI) and the Modification of Diet in Renal Disease (MDRD) Study equations for estimating GFR levels above 60 mL/min/1.73 m2. Am J Kidney Dis. 2010;56(3):486–95.

  12. Gómez-Marcos MA, Recio-Rodrí­guez JI, Patino-Alonso MC, Agudo-Conde C, Gómez-Sánchez L, Gómez-Sanchez M, et al. Cardio-ankle vascular index is associated with cardiovascular target organ damage and vascular structure and function in patients with diabetes or metabolic syndrome, LOD-DIABETES study: a case series report. Cardiovasc Diabetol. 2015;14:7.

  13. Uezima CB, Zanella MT, Sachs A, Pimazzoni Netto A, Zach PL. [Efect of short term glycemic control on microalbuminuria and glomerular filtration rate in type 2 diabetic patients with poor glycemic control]. J Bras Nefrol. 2012;34(2):130–8.

  14. Zanetti ML, Arrelias CC, Franco RC, Santos MA, Rodrigues FF, Faria HT. Adherence to nutritional recommendations and sociodemographic variables in patients with diabetes mellitus. Rev Esc Enferm USP. 2015;49(4):619–25.

  15. Yu R, Yan LL, Wang H, Ke L, Yang Z, Gong E, et al. Effectiveness of a community-based individualized lifestyle intervention among older adults with diabetes and hypertension, Tianjin, China, 2008-2009. Prev Chronic Dis. 2014;11:120333.

  16. Qi L, Feng L, Tang W, Ma X, Ding X, Mao D, et al. A community-based comprehensive intervention program for 7200 patients with type 2 diabetes mellitus in Chongqing (China). Int J Environ Res Public Health. 2014;11(11):11450–63.

  17. Currie CJ, Peyrot M, Morgan CL, Poole CD, Jenkins-Jones S, Rubin RR, et al. The impact of treatment noncompliance on mortality in people with type 2 diabetes. Diabetes Care. 2012;35(6):1279–84.

  18. Gutiérrez Herrera VR, Zerón HM, Mendieta Alcántara MR. Adherence to two methods of education and metabolic control in type 2 diabetics. Ethiop J Health Sci. 2015;25(2):163–70.

  19. Ekinci EI, Jerums G, Skene A, Crammer P, Power D, Cheong KY, et al. Renal structure in normoalbuminuric and albuminuric patients with type 2 diabetes and impaired renal function. Diabetes Care. 2013;36(11):3620–6.

  20. Liu F, Wu M, Feng YH, Zhong H, Cui T, Huang YQ, et al. Influence of HbA1c on short-term blood pressure variability in type 2 diabetic patients with diabetic nephropathy. J Zhejiang Univ Sci B. 2013;14(11):1033–40.

  21. Ibrahim H, Mondress M, Tello A, Fan Y, Koopmeiners J, Thomas W. An alternative formula to the Cockcroft-Gault and the modification of diet in renal diseases formulas in predicting GFR in individuals with type 1 diabetes. J Am Soc Nephrol. 2005;16(4):1051–60.

  22. Vervoort G, Willems HL, Wetzels JF. Assessment of glomerular filtration rate in healthy subjects and normoalbuminuric diabetic patients: validity of a new (MDRD) prediction equation. Nephrol Dial Transplant. 2002;17(11):1909–13.

  23. Pugliese G, Solini A, Bonora E, Orsi E, Zerbini G, Giorgino F, et al. The Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation provides a better definition of cardiovascular burden associated with CKD than the Modification of Diet in Renal Disease (MDRD) Study formula in subjects with type 2 diabetes. Atherosclerosis. 2011;218(1):194–9.

  24. Fabbian F, Pala M, Monesi M, De Giorgi A, Mallozzi Menegatti A, Tomasi F, et al. The estimation of glomerular filtration rate in type 2 diabetic patients may depend on the equation used. Eur Rev Med Pharmacol Sci. 2013;17(20):2791–7.

  25. Chou CK, Weng SW, Chang HW, Chen CY, Su SC, Liu RT. Analysis of traditional and nontraditional risk factors for peripheral arterial disease in elderly type 2 diabetic patients in Taiwan. Diabetes Res Clin Pract. 2008;81(3):331–7.

  26. Wakasugi M, Kazama JJ, Yamamoto S, Kawamura K, Narita I. A combination of healthy lifestyle factors is associated with a decreased incidence of chronic kidney disease: a population-based cohort study. Hypertens Res. 2013;36(4):328–33.

  27. Jones-Burton C, Mishra SI, Fink JC, Brown J, Gossa W, Bakris GL, et al. An in-depth review of the evidence linking dietary salt intake and progression of chronic kidney disease. Am J Nephrol. 2006;26(3):268–75.

  28. Nelson RG, Tuttle KR, Bilous RW, Gonzalez-Campoy JM, Mauer M, Molitch ME, et al. KDOQI Clinical Practice Guideline for Diabetes and CKD: 2012 Update. Am J Kidney Dis. 2012;60(5):850–86.

  29. Navaneethan SD, Yehnert H, Moustarah F, Schreiber MJ, Schauer PR, Beddhu S. Weight loss interventions in chronic kidney disease: a systematic review and meta-analysis. Clin J Am Soc Nephrol. 2009;4(10):1565–74.

  30. Penfornis A, Blicklé JF, Fiquet B, Quéré S, Dejager S. How are patients with type 2 diabetes and renal disease monitored and managed? Insights from the observational OREDIA study. Vasc Health Risk Manag. 2014;10:341–52.

  31. Di Landro D, Catalano C, Lambertini D, Bordin V, Fabbian F, Naso A, et al. The effect of metabolic control on development and progression of diabetic nephropathy. Nephrol Dial Transplant. 1998;13(Suppl8):35–43.

  32. Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int Suppl. 2013;3:1–150.

  33. Fraser SD, Aitken G, Taal MW, Mindell JS, Moon G, Day J, et al. Exploration of chronic kidney disease prevalence estimates using new measures of kidney function in the health survey for England. PloS One. 2015;10(2):e0118676.

How to Cite
Anna FD, Hugo MZ, Ruth MA. Renal evaluation in patients with type 2 diabetes mellitus and its association with diastolic blood pressure. Med J Indones [Internet]. 2016Apr.15 [cited 2024Apr.20];25(1):25-2. Available from:
Clinical Research