X-ray radiation effect of C-arm on adipose tissue-mesenchymal stem cell viability and population doubling time

  • Ahmad J. Rahyussalim Department of Orthopaedic and Traumatology, Faculty of Medicine, Universitas Indonesia, Cipto Mangunkusumo Hospital, Jakarta http://orcid.org/0000-0003-3248-1147
  • Jeanne A. Pawitan Department of Histology, Faculty of Medicine, Universitas Indonesia, Jakarta
  • Alam R. Kusnadi Department of Orthopaedic and Traumatology, Faculty of Medicine, Universitas Indonesia, Cipto Mangunkusumo Hospital, Jakarta
  • Tri Kurniawati Stem Cell and Tissue Engineering Cluster, Faculty of Medicine, Universitas Indonesia, Jakarta
Keywords: AT-MSCs, population doubling time, irradiation, viability
Abstract viewed: 2310 times
PDF downloaded: 925 times
HTML downloaded: 63 times
EPUB downloaded: 69 times

Abstract

Background: Adipose tissue derived mesenchymal stem cells (AT-MSCs) are relatively easy in isolation procedure compared to bone marrow-derived. Minimally invasive MSC injections need C-arm as guidance that potentially influence the cell viability and doubling time. This study aimsed to determine the effect of C-arm X-ray exposure on AT-MSC viability and population doubling time (PDT).

Methods: This experimental study used cryopreserved adipose tissue derived MSCs stored in Stem Cell Medical Technology Integrated Service Unit Cipto Mangunkusumo Hospital. Cells were thawed, propagated, and exposed to varying doses of C-arm X-ray radiation. Stem cell viability was measured, and then the cells were cultured to assess their PDT. Generalized linear models test was used to compare cell viability between post-thaw, post-propagation, post-radiation, post-culture post-radiation, and control and between radiation dose groups. Kruskal-Wallis test assessed PDT between various radiation doses in post-radiation groups. Wilcoxon test was used to assess PDT between pre-radiation and post-radiation groups.

Results: Mean confluence period of adipose MSCs post- irradiation was 4.33 days. There was no statistically significant difference in MSC viability after X-ray exposure between pre- and post-irradiation groups (p=0.831). There was no correlation between post-irradiation viability and radiation dose (p=0.138, r=0.503). There were no significant differences in PDT between pre- and post-culture post-irradiation groups and between various radiation doses in post-irradiation groups (p=0.792).

Conclusion: MSC viability and PDT were not influenced by radiation exposure up to 32.34 mgray.

Author Biography

Ahmad J. Rahyussalim, Department of Orthopaedic and Traumatology, Faculty of Medicine, Universitas Indonesia, Cipto Mangunkusumo Hospital, Jakarta
Department of Orthopaedic and Traumatology FMUI RSCM

References

  1. Barry FP, Murphy JM. Mesenchymal stem cells: clinical applications and biological characterization. Int J Biochem Cell Biol. 2004;36(4):568–84. http://dx.doi.org/10.1016/j.biocel.2003.11.001

  2. Lubis AM, Sandhow L, Lubis VK, Noor A, Gumay F, Merlina M, et al. Isolation and cultivation of mesenchymal stem cells from iliac crest bone marrow for further cartilage defect management. Acta Med Indonesia. 2011;43(3):178–84.

  3. Wang Y, Han Z, Song Y, Han ZC. Safety of mesenchymal stem cells for clinical application. Stem Cells Int. 2012;2012:652034. http://dx.doi.org/10.1155/2012/652034

  4. Hu L, Hu J, Zhao J, Liu J, Ouyang W, Yang C, et al. Side-by-side comparison of the biological characteristics of human umbilical cord and adipose tissue-derived mesenchymal stem cells. Biomed Res Int. 2013;2013:1–12. http://dx.doi.org/10.1155/2013/438243

  5. Sachs PC, Francis MP, Zhao M, Brumelle J, Rao RR, Elmore LW, et al. Defining essential stem cell characteristics in adipose-derived stromal cells extracted from distinct anatomical sites. Cell Tissue Res. 2012;349(2):505–15. http://dx.doi.org/10.1007/s00441-012-1423-7

  6. Pawitan JA. Prospect of adipose tissue derived mesenchymal stem cells in regenerative medicine. Cell Tissue Transplant Ther. 2009;2:7–9.

  7. Haddad NE. Mesenchymal stem cells: immunology and therapeutic benefits. In: Gholamrezanezhad DA, ed. Stem Cells in Clinic and Research. InTech. 2011. http://www.intechopen.com/books/stem-cells-in-clinic-and-research/mesenchymal-stem-cells-immunology-and-therapeutic-benefits.

  8. Park HC, Shim YS, Ha Y, Yoon SH, Park RS, Choi BH, et al. Treatment of complete spinal cord injury patients by autologous bone marrow cell transplantation and administration of granulocyte-macrophage colony stimulating factor. Tissue Eng. 2005;11(5-6):913–22. http://dx.doi.org/10.1089/ten.2005.11.913

  9. William JB, Prabakaran R, Ayyappan S, Puskhinraj H, Rao D, Manjunath SR, et al. Functional recovery of spinal cord injury following application of intralesional bone marrow mononuclear cells embedded in polymer scaffold? two year follow-up in a canine. J Stem Cell Res Ther. 2011;1(110):1–5. http://dx.doi.org/10.4172/2157-7633.1000110

  10. Neirinckx V, Cantinieaux D, Coste C, Rogister B, Franzen R, Wislet-Gendebien S. Concise review: spinal cord injuries: how could adult mesenchymal and neural crest stem cells take up the challenge. Stem Cells. 2014;32(4):829–43. http://dx.doi.org/10.1002/stem.1579

  11. Pawitan JA, Damayanti L, Bustami A, Swantari NM. Detection of morphological changes in adipose tissue-derived stem cells after passage by the simple spot method. J US-China Med Sci. 2011;8(2):92–8.

  12. Yoon SH, Shim YS, Park YH, Chung JK, Nam JH, Kim MO, et al. Complete spinal cord injury treatment using autologous bone marrow cell transplantation and bone marrow stimulation with granulocyte macrophage-colony stimulating factor: Phase I/II clinical trial. Stem Cells. 2007;25(8):2066–73 http://dx.doi.org/10.1634/stemcells.2006-0807

  13. Li YY, Huang TJ, Cheng CC, Wu MH, Lee CY. Comparing radiation exposure during percutaneous vertebroplasty using one- vs two-fluoroscopic technique. BMC Musculoskelet Disord. 2013;14:38. http://dx.doi.org/10.1186/1471-2474-14-38

  14. Nicolay NH, Sommer E, Lopez R, Wirkner U, Trinh T, Sisombath S, et al. Mesenchymal stem cells retain their defining stem cell characteristics after exposure to ionizing radiation. Int J Radiat Oncol Biol Phys. 2013;87(5):1171–8. http://dx.doi.org/10.1016/j.ijrobp.2013.09.003

  15. Kurpinski K, Jang DJ, Bhattacharya S, Rydberg B, Chu J, So J, et al. Differential effects of x-rays and high-energy 56Fe ions on human mesenchymal stem cells. Int J Radiat Oncol Biol Phys. 2009;73(3):869–77. http://dx.doi.org/10.1016/j.ijrobp.2008.10.002

  16. Xu W, Xu L, Chen M, Mao YT, Xie ZG, Wu SL, et al. The effects of low dose x-irradiation on osteoblastic MC3T3-E1 cells in vitro. BMC Musculoskeletal Disord. 2012;13:94. http://dx.doi.org/10.1186/1471-2474-13-94

  17. Cristofalo VJ, Allen RG, Pignolo RJ, Martin BG, Beck JC. Relationship between donor age and the replicative lifespan of human cells in culture: a reevaluation. Proc Natl Acad Sci U S A. 1998;95(18):10614–9. http://dx.doi.org/10.1073/pnas.95.18.10614

  18. Suryani D, Pawitan JA, Lilianty J, Purwoko RY, Liem IK, Damayanti L. Comparison of fetal bovine serum and platelet-rich plasma on human lipoaspirate-derived mesenchymal stem cell proliferation. Med J Indones. 2013;22(3):146–51. http://dx.doi.org/10.13181/mji.v22i3.583

  19. Islam MS, Stemig ME, Takahashi Y, Hui SK. Radiation response of mesenchymal stem cells derived from bone marrow and human pluripotent stem cells. J Radiat Res. 2015;56(2):269–77. http://dx.doi.org/10.1093/jrr/rru098

  20. Manda K, Kavanagh JN, Buttler D, Prise KM, Hildebrandt G. Low dose effects of ionizing radiation on normal tissue stem cells. Mutat Res Rev Mutat Res. 2014;761:6–14. http://dx.doi.org/10.1016/j.mrrev.2014.02.003

  21. Shao L, Luo Y, Zhou D. Hematopoietic stem cell injury induced by ionizing radiation. Antioxid Redox Signal. 2014;20(9):1447–62. http://dx.doi.org/10.1089/ars.2013.5635

  22. Singh S, Kloss FR, Brunauer R, Schimke M, Jamnig A, Greiderer-Kleinlercher B, et al. Mesenchymal stem cells show radioresistance in vivo. J Cell Mol Med. 2012;16(4):877–87. http://dx.doi.org/10.1111/j.1582-4934.2011.01383.x

  23. Jackson SP, Bartek J. The DNA-damage response in human biology and disease. Nature. 2009;461(7267):1071–8. http://dx.doi.org/10.1038/nature08467

  24. Li J, Kwong DL, Chan GC. The effects of various irradiation doses on the growth and differentiation of marrow-derived human mesenchymal stromal cells. Pediatr Transplant. 2007;11(4):379–87. http://dx.doi.org/10.1111/j.1399-3046.2006.00663.x

  25. Pawlik TM, Keyomarsi K. Role of cell cycle in mediating sensitivity to radiotherapy. Int J Radiat Oncol Biol Phys. 2004;59(4):928–42. http://dx.doi.org/10.1016/j.ijrobp.2004.03.005

  26. Liang X, So YH, Cui J, Ma K, Xu X, Zhao Y, et al. The low-dose ionizing radiation stimulates cell proliferation via activation of the MAPK/ERK pathway in rat cultured mesenchymal stem cells. J Radiat Res. 2011;52(3):380–6. http://dx.doi.org/10.1269/jrr.10121

  27. Ding LH, Shingyoji M, Chen F, Hwang JJ, Burma S, Lee C, et al. Gene expression profiles of normal human fibroblasts after exposure to ionizing radiation: a comparative study of low and high doses. Radiat Res. 2005;164(1):17–26. http://dx.doi.org/10.1667/RR3354

  28. Schallmoser K, Bartmann C, Rohde E, Bork S, Guelly C, Obenauf AC, et al. Replicative senescence-associated gene expression changes in mesenchymal stromal cells are similar under different culture conditions. Haematologica. 2010;95(6):867–74. http://dx.doi.org/10.3324/haematol.2009.011692

  29. Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 2001;7(2):211–28. http://dx.doi.org/10.1089/107632701300062859

  30. Goei N, Liem IK, Pawitan JA, Mediana D. Effect of platelet rich plasma on post cryopreservation viability, morphology, and proliferation of human umbilical cord stem cells. Online J Biol Sci. 2015;15:42–8. http://dx.doi.org/10.3844/ojbsci.2015.42.48

  31. Mitchell JB, McIntosh K, Zvonic S, Garrett S, Floyd ZE, Kloster A, et al. Immunophenotype of human adipose-derived cells: temporal changes in stromal-associated and stem cell-associated markers. Stem Cells. 2006;24(2):376–85. http://dx.doi.org/10.1634/stemcells.2005-0234

  32. Zhu Y, Liu T, Song K, Fan X, Ma X, Cui Z. Adipose-derived stem cell: A better stem cell than BMSC. Cell Biochem Funct. 2008;26(6):664–75. http://dx.doi.org/10.1002/cbf.1488

  33. Wall ME, Bernacki SH, Loboa EG. Effects of serial passaging on the adipogenic and osteogenic differentiation potential of adipose-derived human mesenchymal stem cells. Tissue Eng. 2007;13(6):1291–8. http://dx.doi.org/10.1089/ten.2006.0275

  34. Gruber HE, Somayaji S, Riley F, Hoelsher GL, Norton HJ, Ingram J, et al. Human adipose-derived mesenchymal stem cells : serial passaging, doubling time and cell senescence. Biotech Histochem. 2012;87(4):303–11. http://dx.doi.org/10.3109/10520295.2011.649785

  35. Peng L, Jia Z, Yin X, Zhang X, Liu Y, Chen P, et al. Comparative analysis of mesenchymal stem cells from bone marrow, cartilage, and adipose tissue. Stem Cells Dev. 2008;17(4):761–73. http://dx.doi.org/10.1089/scd.2007.0217

  36. Hahn GM, Bagshaw MA. Serum concentration: effects on cycle and x-ray sensitivity of mammalian cells. Science. 1966;151(3709):459–61. http://dx.doi.org/10.1126/science.151.3709.459

  37. Sardjono CT, Setiawan M, Frisca F, Saputra V, Aniko G, Sandra F, et al. Application of a modified method for stem cell isolation from lipoaspirates in a basic lab. Med J Indones. 2009;18(2):91–6. http://dx.doi.org/10.13181/mji.v18i2.343

  38. Pawitan JA, Suryani D, Wulandari D, Damayanti L, Liem IK, Purwoko RY. Prolonged culture in FBS and FBS-substitute containing media: spontaneous chondrogenic differentiation of adipose tissue derived mesenchymal stem cells. Int J Pharm Tech Res. 2014;6(1):224–35.

  39. Olko P, Currivan L, van Dijk JW, Lopez MA, Wernli C. Thermoluminescent detectors applied in individual monitoring of radiation workers in Europe -- a review based on the EURADOS questionnaire. Radiat Prot Dosimetry. 2006;120(1-4):298–302. http://dx.doi.org/10.1093/rpd/nci538

  40. Sofyan H. Keunggulan dan kelemahan dosimeter luminesensi sebagai dosimetri personal dalam pemantauan dosis radiasi eksternal. In: Jakarta: PTKMR BATAN, UI, Kemenkes RI. 2012;1–16. Indonesian.

  41. Freire L, Calado A, Cardoso JV, Santos LM, Alves JG. Comparison of LiF (TLD-100 and TLD-100H) detectors for extremity monitoring. Radiat Meas. 2008;43(2–6):646–50. http://dx.doi.org/10.1016/j.radmeas.2007.12.013

  42. Sofyan H. Perbandingan tanggapan dosimeter termoluminisensi lif:mg,ti dan lif:mg,cu,p terhadap dosis dalam aplikasi medik. Indones J Nucl Sci Technol. 2012;13:109–18. Indonesian.

  43. Schipper BM, Marra KG, Zhang W, Donnenberg AD, Rubin JP. Regional anatomic and age effects on cell function of human adipose-derived stem cells. Ann Plast Surg. 2008;60(5):538–44. http://dx.doi.org/10.1097/SAP.0b013e3181723bbe

Published
2016-04-15
How to Cite
1.
Rahyussalim AJ, Pawitan JA, Kusnadi AR, Kurniawati T. X-ray radiation effect of C-arm on adipose tissue-mesenchymal stem cell viability and population doubling time. Med J Indones [Internet]. 2016Apr.15 [cited 2024Apr.27];25(1):10-8. Available from: http://mji.ui.ac.id/journal/index.php/mji/article/view/1335
Section
Basic Medical Research