The potential of carbonate apatite as an alternative bone substitute material

Authors

  • Ahmad Jabir Rahyussalim Department of Orthopaedic and Traumatology, Faculty of Medicine Universitas Indonesia, Cipto Mangunkusumo Hospital, Jakarta
  • Sugeng Supriadi Department of Mechanical Engineering, Faculty of Engineering, Universitas Indonesia, Depok
  • Aldo Fransiskus Marsetio Department of Orthopaedic and Traumatology, Faculty of Medicine Universitas Indonesia, Cipto Mangunkusumo Hospital, Jakarta http://orcid.org/0000-0002-1917-9042
  • Pancar Muhammad Pribadi Department of Mechanical Engineering, Faculty of Engineering Universitas Indonesia, Depok
  • Bambang Suharno Department of Mechanical Engineering, Faculty of Engineering Universitas Indonesia, Depok

DOI:

https://doi.org/10.13181/mji.v28i1.2681

Keywords:

bone graft, bone substitute, bone scaffold, calcium phosphate, carbonate apatite, orthopedic biomaterials

Abstract

Bone reconstructive surgery has become a common procedure, and bone transplantation has become the second most frequently performed tissue transplantation procedure worldwide. Therefore, the need for bone substitute materials has increased. Artificial bone substitutes exhibit osteoconductive properties and feature several advantages, including abundant resources, low cost, and low donor site morbidity. Carbonate apatite (CO3Ap) is a calcium phosphate ceramic that can be used as a synthetic bone graft. The carbonate content of this ceramic is similar to that of bone apatite. In this review, we show that carbonate apatite can be degraded given its chemical reactivity in a weakly acidic environment and through osteoclast resorption. Moreover, it is osteoconductive and promotes bone tissue formation without fibrotic tissue formation. Additionally, microstructural analysis revealed that new bone tissue is formed within the bone graft itself.

Downloads

Download data is not yet available.

References

Campana V, Milano G, Pagano E, Barba M, Cicione C, Salonna G, et al. Bone substitutes in orthopaedic surgery: from basic science to clinical practice. J Mater Sci Mater Med. 2014;25(10):2445–61. https://doi.org/10.1007/s10856-014-5240-2

Bhatt RA, Rozental TD. Bone graft substitutes. Hand Clin 2012;28(4):457–68. https://doi.org/10.1016/j.hcl.2012.08.001

Suh H, Park JC, Han DW, Lee DH, Han CD. A bone replaceable artificial bone substitute: cytotoxicity, cell adhesion, proliferation, and alkaline phosphatase activity. Artif Organs. 2001;25(1):14–21. https://doi.org/10.1046/j.1525-1594.2001.025001014.x

Giannoudis PV, Dinopoulos H, Tsiridis E. Bone substitutes: an update. Injury. 2005;36 Suppl 3:S20–7. https://doi.org/10.1016/j.injury.2005.07.029

Moore WR, Graves SE, Bain GI. Synthetic bone graft substitutes. ANZ J Surg. 2001;71(6):354–61. https://doi.org/10.1046/j.1440-1622.2001.2128.x

Taylor BC, French BG, Fowler TT, Russell J, Poka A. Induced membrane technique for reconstruction to manage bone loss. J Am Acad Orthop Surg. 2012;20(3):142–50. https://doi.org/10.5435/JAAOS-20-03-142

Yuasa T, Miyamoto Y, Ishikawa K, Takechi M, Momota Y, Tatehara S, et al. Effects of apatite cements on proliferation and differentiation of human osteoblasts in vitro. Biomaterials. 2004;25(7–8):1159–66. https://doi.org/10.1016/j.biomaterials.2003.08.003

Kasai T, Sato K, Kanematsu Y, Shikimori M, Kanematsu N, Doi Y. Bone tissue engineering using porous carbonate apatite and bone marrow cells. J Craniofac Surg. 2010;21(2):473–8. https://doi.org/10.1097/SCS.0b013e3181cfea6d

Ayukawa Y, Suzuki Y, Tsuru K, Koyano K, Ishikawa K. Histological comparison in rats between carbonate apatite fabricated from gypsum and sintered hydroxyapatite on bone remodeling. Biomed Res Int. 2015;2015:579541. https://doi.org/10.1155/2015/579541

Chazono M, Tanaka T, Kitasato S, Kikuchi T, Marumo K. Electron microscopic study on bone formation and bioresorption after implantation of beta-tricalcium phosphate in rabbit models. J Orthop Sci. 2008;13(6):550–5. chttps://doi.org/10.1007/s00776-008-1271-1

Horowitz RA, Mazor Z, Foitzik C, Prasad H, Rohrer M, Palti A. v-tricalcium phosphate as bone substitute material. J Osseointegration. 2010;1(2):61–8. https://doi.org/10.23805/jo.2010.02.02.04

Friesenbichler J, Maurer-Ertl W, Sadoghi P, Pirker-Fruehauf U, Bodo K, Leithner A. Adverse reactions of artificial bone graft substitutes: lessons learned from using tricalcium phosphate geneX(R)®. Clin Orthop Relat Res. 2014;472(3):976–82.. https://doi.org/10.1007/s11999-013-3305-z

Ogose A, Hotta T, Kawashima H, Kondo N, Gu W, Kamura T, et al. Comparison of hydroxyapatite and beta tricalcium phosphate as bone substitutes after excision of bone tumors. J Biomed Mater Res B Applied Biomater. 2005;72(1):94–101. https://doi.org/10.1002/jbm.b.30136

Rucci N. Molecular biology of bone remodelling. Clin Cases Miner Bone Metab. 2008;5(1):49–56.

Giannoudis PV, Einhorn TA, Marsh D. Fracture healing: the diamond concept. Injury. 2007;38 Suppl 4:S3–6. https://doi.org/10.1016/S0020-1383(08)70003-2

Nagai H, Kobayashi-Fujioka M, Fujisawa K, Ohe G, Takamaru N, Hara K, et al. Effects of low crystalline carbonate apatite on proliferation and osteoblastic differentiation of human bone marrow cells. J Mater Sci Mater Med. 2015;26(2):99. https://doi.org/10.1007/s10856-015-5431-5

Khan SN, Cammisa FP Jr, Sandhu HS, Diwan AD, Girardi FP, Lane JM. The biology of bone grafting. J Am Acad Orthop Surg. 2005;13(1):77–86. https://doi.org/10.5435/00124635-200501000-00010

Ishikawa K. Carbonate apatite bone replacement. In: Antoniac IV, editor. Handbook of Bioceramics and Biocomposites. 1st ed: Springer; 2016. p. 213–32. https://doi.org/10.1007/978-3-319-12460-5_8

Doi Y, Shibutani T, Moriwaki Y, Kajimoto T, Iwayama Y. Sintered carbonate apatites as bioresorbable bone substitutes. J Biomed Mater Res. 1998;39(4):603–10. https://doi.org/10.1002/(SICI)1097-4636(19980315)39:4<603::AID-JBM15>3.0.CO;2-7

Ana I, Matsuya S, Ishikawa K. Engineering of carbonate apatite bone substitute based on composition-transformation of gypsum and calcium hydroxide. Eng. 2010;2(5):344–52. https://doi.org/10.4236/eng.2010.25045

Matsuura A, Kubo T, Doi K, Hayashi K, Morita K, Yokota R, et al. Bone formation ability of carbonate apatite-collagen scaffolds with different carbonate contents. Dent Mater J. 2009;28(2):234–42. https://doi.org/10.4012/dmj.28.234

Kanazawa M, Tsuru K, Fukuda N, Sakemi Y, Nakashima Y, Ishikawa K. Evaluation of carbonate apatite blocks fabricated from dicalcium phosphate dihydrate blocks for reconstruction of rabbit femoral and tibial defects. J Mater Sci Mater Med. 2017;28(6):85. https://doi.org/10.1007/s10856-017-5896-5

Habibovic P, Juhl MV, Clyens S, Martinetti R, Dolcini L, Theilgaard N, et al. Comparison of two carbonated apatite ceramics in vivo. Acta Biomater. 2010;6(6):2219–26. https://doi.org/10.1016/j.actbio.2009.11.028

Keiichi K, Mitsunobu K, Masafumi S, Yutaka D, Toshiaki S. Induction of new bone by basic FGF-loaded porous carbonate apatite implants in femur defects in rats. Clin Oral Implants Res. 2009;20(6):560–5. https://doi.org/10.1111/j.1600-0501.2008.01676.x

Mathur KK, Tatum SA, Kellman RM. Carbonated apatite and hydroxyapatite in craniofacial reconstruction. Arch Facial Plast Surg. 2003;5(5):379–83. https://doi.org/10.1001/archfaci.5.5.379

Gómez-Morales J, Iafisco M, Delgado-López JM, Sarda S, Drouet C. Progress on the preparation of nanocrystalline apatites and surface characterization: overview of fundamental and applied aspects. Prog Cryst Growth Ch. 2013;59(1):1-46. https://doi.org/10.1016/j.pcrysgrow.2012.11.001

Published

2019-05-08

How to Cite

1.
Rahyussalim AJ, Supriadi S, Marsetio AF, Pribadi PM, Suharno B. The potential of carbonate apatite as an alternative bone substitute material. Med J Indones [Internet]. 2019May8 [cited 2024Nov.21];28(1):92-7. Available from: http://mji.ui.ac.id/journal/index.php/mji/article/view/2681

Issue

Section

Review Article
Abstract viewed = 3359 times