Infectivity and viability of dengue virus infected hepatocytes cocultured with peripheral blood mononuclear cells from a healthy subject

Authors

  • Sekar Asri Tresnaningtyas Master Program in Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia https://orcid.org/0000-0002-6455-8877
  • Fithriyah Sjatha Department of Microbiology, Faculty of Medicine, Universitas Indonesia, Cipto Mangunkusumo Hospital, Jakarta, Indonesia; Infectious Disease and Immunology Research Center, Indonesian Medical Education and Research
  • Beti Ernawati Dewi Department of Microbiology, Faculty of Medicine, Universitas Indonesia, Cipto Mangunkusumo Hospital, Jakarta, Indonesia; Infectious Disease and Immunology Research Center, Indonesian Medical Education and Research

DOI:

https://doi.org/10.13181/mji.oa.203433

Keywords:

dengue, hepatocytes, in vitro, liver, monocytes
Abstract viewed: 655 times
PDF downloaded: 647 times
HTML downloaded: 159 times
EPUB downloaded: 182 times

Abstract

BACKGROUND Dengue virus (DENV) can infect and replicate in monocytes, resulting in antibody-dependent enhancement. The liver is the main target of DENV, and the infection mechanisms of DENV include direct cytopathic effects (CPEs) of the virus, mitochondrial dysfunction, and effect of cellular and humoral immune factors in the liver. This study was aimed to explore the infectivity of DENV and viability of human hepatocytes using Huh 7it-1 cells cocultured with peripheral blood mononuclear cells (PBMCs).

METHODS Huh 7it-1 cells were infected with dengue virus serotype-2 (DENV-2) New Guinea C strain at multiplicity of infection of 0.5 and 1 FFU/cell, and cocultured in vitro with and without adherent PBMCs. The infectivity of DENV was assessed by immunoperoxidase staining. The viability of Huh 7it-1 cells was assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT, a tetrazole) assay and trypan blue staining. Data were statistically analyzed by ShapiroWilk and analysis of variance for normality significances.

RESULTS The result showed that addition of PBMCs to DENV-2 infected Huh 7it-1 cells decreased the infectivity of DENV (1537%). DENV-2 infection decreased the viability of Huh 7it-1 cells (15.520.8%). Despite the decrease in infectivity of DENV, the addition of PBMCs increased the Huh 7it-1 cells viability (4.510.2%).

CONCLUSIONS Addition of PBMCs to Huh 7it-1 cells that are infected with DENV-2 decreased the infectivity of DENV and increased Huh 7it-1 cells viability.

Downloads

Download data is not yet available.

References

Halstead SB, editor. Dengue (tropical medicine: science and practice). London: Imperial College Press; 2008. p. 485. https://doi.org/10.1142/p570

World Health Organization. Global strategy for dengue prevention and control 2012-2020. Switzerland: WHO Library Cataloguing-in-Publication Data; 2012. p. 35.

Brady OJ, Gething PW, Bhatt S, Messina JP, Brownstein JS, Hoen AG, et al. Refining the global spatial limits of dengue virus transmission by evidence-based consensus. PLoS Negl Trop Dis. 2012;6(8):e1760. https://doi.org/10.1371/journal.pntd.0001760

Halstead SB, Porterfield JS, O'Rourke EJ. Enhancement of dengue virus infection in monocytes by flavivirus antisera. Am J Trop Med Hyg. 1980;29(4):638-42. https://doi.org/10.4269/ajtmh.1980.29.638

Noisakran S, Onlamoon N, Songprakhon P, Hsiao HM, Chokephaibulkit K, Perng GC. Cells in dengue virus infection in vivo. Adv Virol. 2010;2010:164878. https://doi.org/10.1155/2010/164878

Bunyaratvej A, Butthep P, Yoksan S, Bhamarapravati N. Dengue viruses induce cell proliferation and morphological changes of endothelial cells. Southeast Asian J Trop Med Public Health. 1997;28 Suppl 3:32-7.

Seneviratne SL, Malavige GN, de Silva HJ. Pathogenesis of liver involvement during dengue viral infections. Trans R Soc Trop Med Hyg. 2006;100(7):608-14. https://doi.org/10.1016/j.trstmh.2005.10.007

Marianneau P, Steffan AM, Royer C, Drouet MT, Jaeck D, Kirn A, et al. Infection of primary cultures of human Kupffer cellsby dengue virus: no viral progeny synthesis, but cytokine production is evident. J Virol. 1999;73(6):5201-6. https://doi.org/10.1128/JVI.73.6.5201-5206.1999

Lin YL, Liu CC, Lei HY, Yeh TM, Lin YS, Chen RM, et al. Infection of five human liver cell lines by dengue-2 virus. J Med Virol. 2000;60(4):425-31. https://doi.org/10.1002/(SICI)1096-9071(200004)60:4<425::AID-JMV10>3.0.CO;2-A

Thepparit C, Smith DR. Serotype-specific entry of dengue virus into liver cells: identification of the 37-kilodalton/67-kilodalton high-affinity laminin receptor as a dengue virus serotype 1 receptor. J Virol. 2004;78(22):12647-56. https://doi.org/10.1128/JVI.78.22.12647-12656.2004

Dewi BE, Takasaki T, Kurane I. Peripheral blood mononuclear cells increase the permeability of dengue virus-infected endothelial cells in association with downregulation of vascular endothelial cadherin. J Gen Virol. 2008;89(Pt 3):642-52. https://doi.org/10.1099/vir.0.83356-0

Malkovský M, Loveland B, North M, Asherson GL, Gao L, Ward P, et al. Recombinant interleukin-2 directly augments the cytotoxicity of human monocytes. Nature. 1987;325(6101):262-5. https://doi.org/10.1038/325262a0

Apriyanto DR, Aoki C, Hartati S, Hanafi M, Kardono LB, Arsianti A, et al. Anti-hepatitis C virus activity of a crude extract from Longan (Dimocarpus longan Lour.) leaves. Jpn J Infect Dis. 2016;69(3):213-20. https://doi.org/10.7883/yoken.JJID.2015.107

Couvelard A, Marianneau P, Bedel C, Drouet MT, Vachon F, Hénin D, et al. Report of a fatal case of dengue infection with hepatitis: demonstration of dengue antigens in hepatocytes and liver apoptosis. Hum Pathol. 1999;30(9):1106-10. https://doi.org/10.1016/S0046-8177(99)90230-7

Lin YL, Liu CC, Chuang JI, Lei HY, Yeh TM, Lin YS, et al. Involvement of oxidative stress, NF-IL-6, and RANTES expression in dengue-2-virus-infected human liver cells. Virology. 2000;276(1):114-26. https://doi.org/10.1006/viro.2000.0524

Saha AK, Maitra S, Hazra SC. Spectrum of hepatic dysfunction in 2012 dengue epidemic in Kolkata, West Bengal. Indian J Gastroenterol. 2013;32(6):400-3. https://doi.org/10.1007/s12664-013-0382-6

Lin YL, Lei HY, Lin YS, Yeh TM, Chen SH, Liu HS. Heparin inhibits dengue-2 virus infection of five human liver cell lines. Antiviral Res. 2002;56(1):93-6. https://doi.org/10.1016/S0166-3542(02)00095-5

Scott RM, Nisalak A, Cheamudon U, Ser idhoranakul S, Nimmannitya S. Isolation of dengue viruses from peripheral blood leukocytes of patients with hemorrhagic fever. J Infect Dis. 1980;141(1):1-6. https://doi.org/10.1093/infdis/141.1.1

Nasirudeen AM, Wang L, Liu DX. Induction of p53-dependent and mitochondria-mediated cell death pathway by dengue virus infection of human and animal cells. Microbes Infect. 2008;10(10-11):1124-32.20. https://doi.org/10.1016/j.micinf.2008.06.005

Lang J, Vera D, Cheng Y, Tang H. Modeling dengue virus-hepatic cell interactions using human pluripotent stem cell-derived hepatocyte-like cells. Stem Cell Reports. 2016;7(3):341-54. https://doi.org/10.1016/j.stemcr.2016.07.012

Gresser I, Tovey MG, Bandu MT, Maury C, Brouty-Boye D. Role of interferon in the pathogenesis of virus diseases in mice as demonstrated by the use of anti-interferon serum. I. Rapid evolution of encephalomyocarditis virus infection. J Exp Med. 1976;144(5):1305-15. https://doi.org/10.1084/jem.144.5.1305

Kurane I, Kontny U, Janus J, Ennis FA. Dengue-2 virus infection of human mononuclear cell lines and establishment of persistent infections. Arch Virol. 1990;110(1-2):91-101. https://doi.org/10.1007/BF01310705

Bosch I, Xhaja K, Estevez L, Raines G, Melichar H, Warke RV, et al. Increased production of interleukin-8 in primary human monocytes and in human epithelial and endothelial cell lines after dengue virus challenge. J Virol. 2002;76(11):5588-97. https://doi.org/10.1128/JVI.76.11.5588-5597.2002

Chen J, Ng MM, Chu JJ. Activation of TLR2 and TLR6 by dengue NS1 protein and its implications in the immunopathogenesis of dengue virus infection. PLoS Pathog. 2015;11(7):e1005053. https://doi.org/10.1371/journal.ppat.1005053

Published

2020-10-05

How to Cite

1.
Tresnaningtyas SA, Sjatha F, Dewi BE. Infectivity and viability of dengue virus infected hepatocytes cocultured with peripheral blood mononuclear cells from a healthy subject. Med J Indones [Internet]. 2020Oct.5 [cited 2024Dec.21];29(3):260-7. Available from: http://mji.ui.ac.id/journal/index.php/mji/article/view/3433

Issue

Section

Basic Medical Research
Abstract viewed = 655 times
PDF downloaded = 647 times HTML downloaded = 159 times EPUB downloaded = 182 times