Retinal vascular caliber changes after laser photocoagulation in diabetic retinopathy

  • Habibah Setyawati Muhiddin Department of Ophthalmology, Faculty of Medicine, Universitas Hasanuddin, Makassar, Indonesia
  • Idayani Panggalo Department of Ophthalmology, Faculty of Medicine, Universitas Hasanuddin, Makassar, Indonessia
  • Andi Muhammad Ichsan Department of Ophthalmology, Faculty of Medicine, Universitas Hasanuddin, Makassar, Indonesia
  • Budu Department of Ophthalmology, Faculty of Medicine, Universitas Hasanuddin, Makassar, Indonesia
  • Emanuele Trucco VAMPIRE Project, Computing (SSEN), University of Dundee, Dundee, United Kingdom
  • John Ellis Ninewells NHS Hospital and Medical School, Dundee, United Kingdom
Keywords: diabetic retinopathy, laser photocoagulation, retinal vascular caliber
Abstract viewed: 915 times
PDF downloaded: 545 times
HTML downloaded: 61 times
EPUB downloaded: 269 times


BACKGROUND Diabetic retinopathy causes vascular dilatation caused by hypoxia, whereas oxygen tension improvement leads to retinal vessels narrowing. Given that laser photocoagulation aims to increase the oxygen tension in the retina, we hypothesized that the narrowing of vessel caliber after the treatment could be possibly demonstrated. This study aimed to assess the changes in the caliber of retinal vessels before and after laser photocoagulation in diabetic retinopathy.

METHODS This research was a prospective cohort study on the treatment of diabetic retinopathy by laser photocoagulation, and it was conducted at Universitas Hasanuddin Hospital, Makassar, Indonesia between November 2017–April 2018. Retinal vascular caliber changes were analyzed before and 6–8 weeks after photocoagulation in 30 diabetic eyes. Central retinal arteriolar equivalent (CRAE) and central retinal venular equivalent (CRVE) were measured using the vessel assessment and measurement platform software for images of the retina (VAMPIRE) manual annotation tool.

RESULTS A significant decrease of CRVE was observed after laser photocoagulation (p<0.001), but CRAE was not reduced significantly (p = 0.067). No difference was recorded between CRVE and CRAE post-laser photocoagulation (p = 0.14), implying a reduction in vein caliber toward normal in the treated eyes.

CONCLUSIONS Laser photocoagulation decreases the CRVE in diabetic retinopathy despite the absence of changes in the grade of diabetic retinopathy.


  1. Nguyen TT, Wang JJ, Wong TY. Retinal vascular changes in prediabetes and prehypertension: new findings and their research and clinical implications. Diabetes Care. 2007;30(10):2708-15.

  2. Stitt AW, Curtis TM, Chen M, Medina RJ, McKay GJ, Jenkins A, et al. The progress in understanding and treatment of diabetic retinopathy. Prog Retin Eye Res. 2016;51:156-86.

  3. Ding J, Wai KL, McGeechan K, Ikram MK, Kawasaki R, Xie J, et al. Retinal vascular caliber and the development of hypertension: a meta-analysis of individual participant data. J Hypertens. 2014;32(22):207-15.

  4. Liew G, Wang JJ. Retinal vascular signs: a window to the heart? Rev Esp Cardiol. 2011;64(6):515-21. Spanish.

  5. Chey JH, Park JM. Retinal vascular caliber changes in diabetic retinopathy after panretinal photocoagulation and additive bevacizumab injections. J Korean Ophthalmol Soc. 2016;57(6):917-23.

  6. Maár N, Luksch A, Graebe A, Ergun E, Wimpissinger B, Tittl M, et al. Effect of laser photocoagulation on the retinal vessel diameter in branch and macular vein occlusion. Arch Ophthalmology. 2004;122(7):987-91.

  7. Dashtbozorg B. Advanced image analysis for the assessment of retinal vascular changes [thesis]. [Porto]: University of Porto. 2015. p. 27-8.

  8. Perez-Rovira A, Gillivray TM, Trucco E, Chin KS, Zutis K, Lupascu C, et al. VAMPIRE: Vessel Assessment and Measurement Platform for Images of the Retina. Conference proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society; 2011:3391-4.

  9. Downie E, Tokarev J, Divani A, Koozekanani DD. Comparison of two free retinal vascular measurement software packages: IVAN and VAMPIRE. Invest Ophthalmol Vis Sci. 2015;56(7):3320.

  10. Pead E, Megaw R, Cameron J, Fleming A, Dhillon B, Trucco E, et al. Automated detection of age-related macular degeneration in color fundus photography: a systematic review. Surv Ophthalmol. 2019;64(4):498-511.

  11. MacGillivray TJ, McGrory S, Pearson T, Cameron J. Retinal imaging in early Alzheimer's disease. In: Perneczky R.,editor. Biomarkers for preclinical Alzheimer's disease. Neuromethods, vol 137. New York: Humana Press; 2018.

  12. McGrory S, Cameron JR, Pellegrini E, Warren C, Doubal FN, Deary IJ, et al. The application of retinal fundus camera imaging in dementia: a systematic review. Alzheimers Dement. 2016;6:91-107.

  13. MacGillivray TJ, Trucco E, Cameron JR, Dhillon B, Houston JG, van Beek EJ. Retinal imaging as a source of biomarkers for diagnosis, characterization and prognosis of chronic illness or long-term conditions. Br J Radiol. 2014;87(1040):20130832.

  14. Trucco E, Ruggeri A, Karnowski T, Giancardo L, Chaum E, Hubschman JP, et al. Validating retinal fundus image analysis algorithms: issues and a proposal. Invest Ophthalmol Vis Sci. 2013;54(5):3546-59.

  15. Vampire [Internet]. [cited 2018 Nov 14]. Available from:

  16. Jeganathan VS, Sabanayagam C, Tai ES, Lee J, Lamoureux E, Sun C, et al. Retinal vascular caliber and diabetes in a multiethnic Asian population. Microcirculation. 2009;16(6):534-43.

  17. Liew G, Benitez-Aguirre P, Craig ME, Jenkins AJ, Hodgson LAB, Kifley A, et al. Progressive retinal vasodilation in patients with type 1 diabetes: a longitudinal study of retinal vascular geometry. Invest Ophthalmol Vis Sci. 2017;58(5):2503-9.

  18. Klein R, Myers CE, Lee KE, Gangnon R, Klein BE. Changes in retinal vessel diameter and incidence and progression of diabetic retinopathy. Arch Ophthalmol. 2012;130(6):749-55.

  19. Ding J, Ikram MK, Cheung CY, Wong TY. Retinal vascular calibre as a predictor of incidence and progression of diabetic retinopathy. Clin Exp Optom. 2012;95(3):290-6.

  20. Ikram MK, Ong YT, Cheung CY, Wong TY. Retinal vascular caliber measurements: clinical significance, current knowledge and future perspectives. Ophthalmologica. 2013;229(3):125-36.

  21. Grunwald JE, Riva CE, Brucker AJ, Sinclair SH, Petrig BL. Effect of panretinal photocoagulation on retinal blood flow in proliferative diabetic retinopathy. Ophthalmology. 1986;93(5):590-5.

  22. Dijah, Iskandar E, Musa RI. Effectiveness of panretinal photocoagulation in treatment of diabetic retinopathy. Ophthalmol Ina. 2015;41:1.

  23. McCannel CA, Atebara NH, Kim SJ, Leonard BC, Rosen RB, Sarraf D, et al. Retina and vitreous. American Academy of Ophthalmology. 2016, section 12:349-401.

  24. Stefánsson E. The mechanism of retinal photocoagulation - How does the laser work? EurOphthal. 2009;02(01):76-9.

How to Cite
Muhiddin HS, Panggalo I, Ichsan AM, Budu, Trucco E, Ellis J. Retinal vascular caliber changes after laser photocoagulation in diabetic retinopathy. Med J Indones [Internet]. 2020Dec.29 [cited 2024May26];29(4):366-71. Available from:
Clinical Research

Most read articles by the same author(s)