Xanthine oxidase inhibition in SARS-CoV-2 infection: the mechanism and potency of allopurinol and febuxostat in COVID-19 management

  • Irandi Putra Pratomo Department of Pulmonology and Respiratory Medicine, Faculty of Medicine, Universitas Indonesia, Universitas Indonesia Hospital, Depok, Indonesia; Bioinformatics Core Facilities, Indonesian Medical Education and Research Institute-Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia https://orcid.org/0000-0003-0826-3967
  • Anna Ariane Department of Internal Medicine, Faculty of Medicine, Universitas Indonesia, Cipto Mangunksumo Hospital, Jakarta, Indonesia
  • Aryo Tedjo Department of Medical Chemistry, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia; Drug Development Research Cluster, Indonesian Medical Education and Research Institute-Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia https://orcid.org/0000-0001-8998-3418
  • Rudi Heryanto Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas IPB, Bogor, Indonesia; Tropical Biopharmaca Research Center, Universitas IPB, Bogor, Indonesia
  • Rafika Indah Paramita Bioinformatics Core Facilities, Indonesian Medical Education and Research Institute-Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia; Department of Medical Chemistry, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia https://orcid.org/0000-0002-8166-4479
Keywords: COVID-19, free radicals, uric acid, xanthine oxidase
Abstract viewed: 2092 times
PDF downloaded: 1169 times
HTML downloaded: 290 times
EPUB downloaded: 146 times


The number of coronavirus disease 2019 (COVID-19) infection cases has been increasing globally, including in Indonesia. Definitive therapy for COVID-19 has not yet been found; hence, repurposed drugs for COVID-19 have been considered and have been practiced by several researchers in the world. This literature review investigates the action of xanthine oxidase as a component of the biomolecular pathway against severe acute respiratory syndrome-related coronavirus-2, the cause of COVID-19, and describes the mechanism and potential of uric acid drugs (allopurinol and febuxostat) as prophylaxis and curative therapy for COVID-19. 


  1. World Health Organization. WHO Director-General's opening remarks at the media briefing on COVID-19 - 11 March 2020 [Internet]. World Health Organization; 2020 [cited 2020 Nov 2]. Available from: https://www.who.int/dg/speeches/detail/whodirector-general-s-opening-remarks-at-the-media-briefing-oncovid-19---11-march-2020.

  2. World Health Organization. Clinical management of severe acute respiratory infection (SARI) when COVID-19 disease is suspected: interim guidance, 13 March 2020 [Internet]. World Health Organization; 2020 [cited 2020 Nov 2]. Available from: https://apps.who.int/iris/handle/10665/331446?search-result=true&query=10665%2F331446&scope=&rpp=10&sort_by=score&order=desc.

  3. Directorate General of Disease Prevention and Control (P2P), Ministry of Health of the Republic of Indonesia. Preparedness guidelines facing coronavirus disease (COVID-19). Jakarta: Directorate General of Disease Prevention and Control (P2P), Ministry of Health of the Republic of Indonesia; 2020. p. 1-115. Indonesian.

  4. Jean SS, Lee PI, Hsueh PR. Treatment options for COVID-19: the reality and challenges. J Microbiol Immunol Infect. 2020;53(3):436-43. https://doi.org/10.1016/j.jmii.2020.03.034

  5. Lippi G, Henry BM. Chronic obstructive pulmonary disease is associated with severe coronavirus disease 2019 (COVID-19). Respir Med. 2020;167:105941. https://doi.org/10.1016/j.rmed.2020.105941

  6. Yang X, Yu Y, Xu J, Shu H, Xia J, Liu, H, Wu, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir. Med. 2020;8(5):475-81. https://doi.org/10.1016/S2213-2600(20)30079-5

  7. Burhan E, Isbaniah F, Susanto AD, Aditama TY, Soedarsono, Sartono TR, et al. Covid-19 pneumonia diagnosis & management in Indonesia. Jakarta: The Indonesia Society of Respirology; 2020. Indonesian.

  8. Battelli, MG, Abbondanza A, Tazzari PL, Bolognesi A, Lemoli RM, Stirpe FT. T lymphocyte killing by a xanthine-oxidase-containing immunotoxin. Cancer Immunol Immunother. 1992;35(6):421-5. https://doi.org/10.1007/BF01789022

  9. Zhang Q, Huang X. Induction of interleukin-6 by coal containing bioavailable iron is through both hydroxyl radical and ferryl species. J Biosci. 2003;28(1):95-100. https://doi.org/10.1007/BF02970138

  10. Khomich OA, Kochetkov SN, Bartosch B, Ivanov AV. Redox biology of respiratory viral infections. Viruses. 2018;10(8):392. https://doi.org/10.3390/v10080392

  11. Swaroopa D, Bhaskar K, Mahathi T, Katkam S, Raju YS, Chandra N, et al. Association of serum interleukin-6, interleukin-8, and acute physiology and chronic health evaluation II score with clinical outcome in patients with acute respiratory distress syndrome. Indian J Crit Care Med. 2016;20(9):518-25. https://doi.org/10.4103/0972-5229.190369

  12. Li T. Diagnosis and clinical management of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection: an operational recommendation of Peking Union Medical College Hospital (V2.0). Emerg Microbes Infect. 2020;9(1):582-5. https://doi.org/10.1080/22221751.2020.1735265

  13. Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ, et.al. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020;395(10229):1033-4. https://doi.org/10.1016/S0140-6736(20)30628-0

  14. Xu Z, Shi L, Wang Y, Zhang J, Huang L, Zhang C, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir. Med. 2020;8(4):420-2. https://doi.org/10.1016/S2213-2600(20)30076-X

  15. Guo YR, Cao QD, Hong ZS, Tan YY, Chen SD, Jin HJ, et al. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak - an update on the status. Mil Med Res. 2020;7:11. https://doi.org/10.1186/s40779-020-00240-0

  16. Rehman ZU, Meng C, Sun Y, Safdar A, Pasha RH, Munir M, et al. Oxidative stress in poultry: lessons from the viral infections. Oxid Med Cell Longev. 2018;2018:5123147. https://doi.org/10.1155/2018/5123147

  17. Akaike T. Role of free radicals in viral pathogenesis and mutation. Rev Med Virol. 2001;11(2):87-101. https://doi.org/10.1002/rmv.303

  18. Battelli MG, Musiani S, Tazzari PL, Stirpe F. Oxidative stress to human lymphocytes by xanthine oxidoreductase activity. Free Radic Res. 2001;35(6):665-79. https://doi.org/10.1080/10715760100301191

  19. Qin C, Zhou L, Hu Z, Zhang S, Yang S, Tao Y, et al. Dysregulation of immune response in patients with coronavirus 2019 (COVID-19) in Wuhan, China. Clin Infect Dis. 2020;71(15):762-8. https://doi.org/10.1093/cid/ciaa248

  20. Terawaki H, Hayashi T, Murase T, Iijima R, Waki K, Tani Y, et al. Relationship between xanthine oxidoreductase redox and oxidative stress among chronic kidney disease patients. Oxid Med Cell Longev. 2018;2018:9714710. https://doi.org/10.1155/2018/9714710

  21. El-Mahdy NA, Saleh DA, Amer MS, Abu-Risha SE. Role of allopurinol and febuxostat in the amelioration of dextraninducedcolitis in rats. Eur J Pharm Sci. 2020;141:105116. https://doi.org/10.1016/j.ejps.2019.105116

  22. Elshafey M, Mossalam AMA, Makharita MY, Elewa A. Prognostic role of serum uric acid in acute respiratory distress syndrome patients: a preliminary study. Egypt J Chest Dis Tuberc. 2015;64(1):197-202. https://doi.org/10.1016/j.ejcdt.2014.11.007

  23. Lee HW, Choi SM, Lee J, Park YS, Lee CH, Yim JJ, et al. Serum uric acid level as a prognostic marker in patients with acute respiratory distress syndrome. J. Intensive Care Med. 2019;34(5):404-10. https://doi.org/10.1177/0885066617698911

  24. Fonseca W, Malinczak CA, Schuler CF, Best SKK, Rasky AJ, Morris SB, et al. Uric acid pathway activation during respiratory virus infection promotes Th2 immune response via innate cytokine production and ILC2 accumulation. Mucosal Immunol. 2020;13(4):691-701. https://doi.org/10.1038/s41385-020-0264-z

  25. Cheng Y, Luo R, Wang K, Zhang M, Wang Z, Dong L, et al. Kidney disease is associated with in-hospital death of patients with COVID-19. Kidney Int. 2020;97(5):829-38. https://doi.org/10.1016/j.kint.2020.03.005

  26. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497-506. https://doi.org/10.1016/S0140-6736(20)30183-5

  27. Pérez-Mazliah D, Albareda MC, Alvarez MG, Lococo B, Bertocchi GL, Petti M, et al. Allopurinol reduces antigen-specific and polyclonal activation of human T cells. Front Immunol. 2012;3:295. https://doi.org/10.3389/fimmu.2012.00295

  28. Akaike T, Ando M, Oda T, Doi T, Ijiri S, Araki S, et al. Dependence on O2- generation by xanthine oxidase of pathogenesis of influenza virus infection in mice. J Clin Invest. 1990;85(3):739-45. https://doi.org/10.1172/JCI114499

  29. Mulia DP, Ali Z, Effendi I, Suhaimi N, Suprapti S, Taruna A, et al. Effect of allopurinol in reducing CRP in hypertension with hyperuricemia patients in Dr. Mohammad Hoesin Hospital Palembang. J Hypertens. 2016;34:e413. https://doi.org/10.1097/01.hjh.0000501061.05299.f4

  30. Prieto-Moure B, Carabén-Redaño A, Aliena-Valero A, Cejalvo D, Toledo AH, Flores-Bellver M, et al. Allopurinol in renal ischemia. J Invest Surg. 2014;27(5):304-16. https://doi.org/10.3109/08941939.2014.911395

  31. Prieto-Moure B, Lloris-Carsí JM, Belda-Antolí M, Toledo-Pereyra LH, Cejalvo-Lapeña D. Allopurinol protective effect of renal ischemia by downregulating TNF-α, IL-1β, and IL-6 response. J Invest Surg. 2017;30(3):143-51. https://doi.org/10.1080/08941939.2016.1230658

  32. Aatif T, Fatihi J, El Annaz H, Qamouss O. Allopurinol-induced drug reactions with eosinophilia and systemic symptoms syndrome with interstitial nephritis. Indian J Nephrol. 2018;28(6):477-81. https://doi.org/10.4103/ijn.IJN_166_17

  33. Malinczak C, Lukacs N, Fonseca W. Early-life respiratory syncytial virus infection, trained immunity and subsequent pulmonary diseases. Viruses. 2020;12(5):505. https://doi.org/10.3390/v12050505

  34. Samuel, Suradi, Sutanto YS. The effects of allopurinol on glutathione sulfhydryl (GSH) serum level, six minute walking test, and CAT score of COPD patients. J Respir Indo. 2019;39(3):169-79. Indonesian.

  35. Stamp LK, Chapman PT, Palmer SC. Allopurinol and kidney function: an update. Joint Bone Spine. 2016;83(1):19-24. https://doi.org/10.1016/j.jbspin.2015.03.013

  36. Goicoechea M, de Vinuesa SG, Verdalles U, Ruiz-Caro C, Ampuero J, Rincón A, et al. Effect of allopurinol in chronic kidney disease progression and cardiovascular risk. Clin J Am Soc Nephrol. 2010;5(8):1388-93. https://doi.org/10.2215/CJN.01580210

  37. Yu KH, Chen DY, Chen JH, Chen SY, Chen SM, Cheng TT, et al. The management of gout and hyperuricemia. In: Hochberg MC, Silman AJ, Smolen JS, Weinblatt ME, weisman MH, editors. Rheumatology. 6th ed. Philadelphia: Elsevier Mosby; 2015. p. 1575-82.

  38. Faruque LI, Ehteshami-Afshar A, Wiebe N, Tjosvold L, Homik J, Tonelli M. A systematic review and meta-analysis on the safety and efficacy of febuxostat versus allopurinol in chronic gout. Semin Arthritis Rheum. 2013;43(3):367-75. https://doi.org/10.1016/j.semarthrit.2013.05.004

  39. Choi H, Neogi T, Stamp L, Dalbeth N, Terkeltaub R. New perspectives in rheumatology: implications of the cardiovascular safety of febuxostat and allopurinol in patients with gout and cardiovascular morbidities trial and the associated food and drug administration public safety alert. Arthritis Rheumatol. 2018;70(11):1702-9. https://doi.org/10.1002/art.40583

How to Cite
Pratomo IP, Ariane A, Tedjo A, Heryanto R, Paramita RI. Xanthine oxidase inhibition in SARS-CoV-2 infection: the mechanism and potency of allopurinol and febuxostat in COVID-19 management. Med J Indones [Internet]. 2020Nov.24 [cited 2024Apr.16];30(1):75–80. Available from: http://mji.ui.ac.id/journal/index.php/mji/article/view/4641
Review Article