Xanthine oxidase inhibition in SARS-CoV-2 infection: the mechanism and potency of allopurinol and febuxostat in COVID-19 management

Authors

  • Irandi Putra Pratomo Department of Pulmonology and Respiratory Medicine, Faculty of Medicine, Universitas Indonesia, Universitas Indonesia Hospital, Depok, Indonesia; Bioinformatics Core Facilities, Indonesian Medical Education and Research Institute-Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia https://orcid.org/0000-0003-0826-3967
  • Anna Ariane Department of Internal Medicine, Faculty of Medicine, Universitas Indonesia, Cipto Mangunksumo Hospital, Jakarta, Indonesia
  • Aryo Tedjo Department of Medical Chemistry, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia; Drug Development Research Cluster, Indonesian Medical Education and Research Institute-Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia https://orcid.org/0000-0001-8998-3418
  • Rudi Heryanto Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas IPB, Bogor, Indonesia; Tropical Biopharmaca Research Center, Universitas IPB, Bogor, Indonesia
  • Rafika Indah Paramita Bioinformatics Core Facilities, Indonesian Medical Education and Research Institute-Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia; Department of Medical Chemistry, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia https://orcid.org/0000-0002-8166-4479

DOI:

https://doi.org/10.13181/mji.rev.204641

Keywords:

COVID-19, free radicals, uric acid, xanthine oxidase
Abstract viewed: 2140 times
PDF downloaded: 1239 times
HTML downloaded: 295 times
EPUB downloaded: 157 times

Abstract

The number of coronavirus disease 2019 (COVID-19) infection cases has been increasing globally, including in Indonesia. Definitive therapy for COVID-19 has not yet been found; hence, repurposed drugs for COVID-19 have been considered and have been practiced by several researchers in the world. This literature review investigates the action of xanthine oxidase as a component of the biomolecular pathway against severe acute respiratory syndrome-related coronavirus-2, the cause of COVID-19, and describes the mechanism and potential of uric acid drugs (allopurinol and febuxostat) as prophylaxis and curative therapy for COVID-19. 

Downloads

Download data is not yet available.

References

World Health Organization. WHO Director-General's opening remarks at the media briefing on COVID-19 - 11 March 2020 [Internet]. World Health Organization; 2020 [cited 2020 Nov 2]. Available from: https://www.who.int/dg/speeches/detail/whodirector-general-s-opening-remarks-at-the-media-briefing-oncovid-19---11-march-2020.

World Health Organization. Clinical management of severe acute respiratory infection (SARI) when COVID-19 disease is suspected: interim guidance, 13 March 2020 [Internet]. World Health Organization; 2020 [cited 2020 Nov 2]. Available from: https://apps.who.int/iris/handle/10665/331446?search-result=true&query=10665%2F331446&scope=&rpp=10&sort_by=score&order=desc.

Directorate General of Disease Prevention and Control (P2P), Ministry of Health of the Republic of Indonesia. Preparedness guidelines facing coronavirus disease (COVID-19). Jakarta: Directorate General of Disease Prevention and Control (P2P), Ministry of Health of the Republic of Indonesia; 2020. p. 1-115. Indonesian.

Jean SS, Lee PI, Hsueh PR. Treatment options for COVID-19: the reality and challenges. J Microbiol Immunol Infect. 2020;53(3):436-43. https://doi.org/10.1016/j.jmii.2020.03.034

Lippi G, Henry BM. Chronic obstructive pulmonary disease is associated with severe coronavirus disease 2019 (COVID-19). Respir Med. 2020;167:105941. https://doi.org/10.1016/j.rmed.2020.105941

Yang X, Yu Y, Xu J, Shu H, Xia J, Liu, H, Wu, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir. Med. 2020;8(5):475-81. https://doi.org/10.1016/S2213-2600(20)30079-5

Burhan E, Isbaniah F, Susanto AD, Aditama TY, Soedarsono, Sartono TR, et al. Covid-19 pneumonia diagnosis & management in Indonesia. Jakarta: The Indonesia Society of Respirology; 2020. Indonesian.

Battelli, MG, Abbondanza A, Tazzari PL, Bolognesi A, Lemoli RM, Stirpe FT. T lymphocyte killing by a xanthine-oxidase-containing immunotoxin. Cancer Immunol Immunother. 1992;35(6):421-5. https://doi.org/10.1007/BF01789022

Zhang Q, Huang X. Induction of interleukin-6 by coal containing bioavailable iron is through both hydroxyl radical and ferryl species. J Biosci. 2003;28(1):95-100. https://doi.org/10.1007/BF02970138

Khomich OA, Kochetkov SN, Bartosch B, Ivanov AV. Redox biology of respiratory viral infections. Viruses. 2018;10(8):392. https://doi.org/10.3390/v10080392

Swaroopa D, Bhaskar K, Mahathi T, Katkam S, Raju YS, Chandra N, et al. Association of serum interleukin-6, interleukin-8, and acute physiology and chronic health evaluation II score with clinical outcome in patients with acute respiratory distress syndrome. Indian J Crit Care Med. 2016;20(9):518-25. https://doi.org/10.4103/0972-5229.190369

Li T. Diagnosis and clinical management of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection: an operational recommendation of Peking Union Medical College Hospital (V2.0). Emerg Microbes Infect. 2020;9(1):582-5. https://doi.org/10.1080/22221751.2020.1735265

Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ, et.al. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020;395(10229):1033-4. https://doi.org/10.1016/S0140-6736(20)30628-0

Xu Z, Shi L, Wang Y, Zhang J, Huang L, Zhang C, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir. Med. 2020;8(4):420-2. https://doi.org/10.1016/S2213-2600(20)30076-X

Guo YR, Cao QD, Hong ZS, Tan YY, Chen SD, Jin HJ, et al. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak - an update on the status. Mil Med Res. 2020;7:11. https://doi.org/10.1186/s40779-020-00240-0

Rehman ZU, Meng C, Sun Y, Safdar A, Pasha RH, Munir M, et al. Oxidative stress in poultry: lessons from the viral infections. Oxid Med Cell Longev. 2018;2018:5123147. https://doi.org/10.1155/2018/5123147

Akaike T. Role of free radicals in viral pathogenesis and mutation. Rev Med Virol. 2001;11(2):87-101. https://doi.org/10.1002/rmv.303

Battelli MG, Musiani S, Tazzari PL, Stirpe F. Oxidative stress to human lymphocytes by xanthine oxidoreductase activity. Free Radic Res. 2001;35(6):665-79. https://doi.org/10.1080/10715760100301191

Qin C, Zhou L, Hu Z, Zhang S, Yang S, Tao Y, et al. Dysregulation of immune response in patients with coronavirus 2019 (COVID-19) in Wuhan, China. Clin Infect Dis. 2020;71(15):762-8. https://doi.org/10.1093/cid/ciaa248

Terawaki H, Hayashi T, Murase T, Iijima R, Waki K, Tani Y, et al. Relationship between xanthine oxidoreductase redox and oxidative stress among chronic kidney disease patients. Oxid Med Cell Longev. 2018;2018:9714710. https://doi.org/10.1155/2018/9714710

El-Mahdy NA, Saleh DA, Amer MS, Abu-Risha SE. Role of allopurinol and febuxostat in the amelioration of dextraninducedcolitis in rats. Eur J Pharm Sci. 2020;141:105116. https://doi.org/10.1016/j.ejps.2019.105116

Elshafey M, Mossalam AMA, Makharita MY, Elewa A. Prognostic role of serum uric acid in acute respiratory distress syndrome patients: a preliminary study. Egypt J Chest Dis Tuberc. 2015;64(1):197-202. https://doi.org/10.1016/j.ejcdt.2014.11.007

Lee HW, Choi SM, Lee J, Park YS, Lee CH, Yim JJ, et al. Serum uric acid level as a prognostic marker in patients with acute respiratory distress syndrome. J. Intensive Care Med. 2019;34(5):404-10. https://doi.org/10.1177/0885066617698911

Fonseca W, Malinczak CA, Schuler CF, Best SKK, Rasky AJ, Morris SB, et al. Uric acid pathway activation during respiratory virus infection promotes Th2 immune response via innate cytokine production and ILC2 accumulation. Mucosal Immunol. 2020;13(4):691-701. https://doi.org/10.1038/s41385-020-0264-z

Cheng Y, Luo R, Wang K, Zhang M, Wang Z, Dong L, et al. Kidney disease is associated with in-hospital death of patients with COVID-19. Kidney Int. 2020;97(5):829-38. https://doi.org/10.1016/j.kint.2020.03.005

Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497-506. https://doi.org/10.1016/S0140-6736(20)30183-5

Pérez-Mazliah D, Albareda MC, Alvarez MG, Lococo B, Bertocchi GL, Petti M, et al. Allopurinol reduces antigen-specific and polyclonal activation of human T cells. Front Immunol. 2012;3:295. https://doi.org/10.3389/fimmu.2012.00295

Akaike T, Ando M, Oda T, Doi T, Ijiri S, Araki S, et al. Dependence on O2- generation by xanthine oxidase of pathogenesis of influenza virus infection in mice. J Clin Invest. 1990;85(3):739-45. https://doi.org/10.1172/JCI114499

Mulia DP, Ali Z, Effendi I, Suhaimi N, Suprapti S, Taruna A, et al. Effect of allopurinol in reducing CRP in hypertension with hyperuricemia patients in Dr. Mohammad Hoesin Hospital Palembang. J Hypertens. 2016;34:e413. https://doi.org/10.1097/01.hjh.0000501061.05299.f4

Prieto-Moure B, Carabén-Redaño A, Aliena-Valero A, Cejalvo D, Toledo AH, Flores-Bellver M, et al. Allopurinol in renal ischemia. J Invest Surg. 2014;27(5):304-16. https://doi.org/10.3109/08941939.2014.911395

Prieto-Moure B, Lloris-Carsí JM, Belda-Antolí M, Toledo-Pereyra LH, Cejalvo-Lapeña D. Allopurinol protective effect of renal ischemia by downregulating TNF-a, IL-1v, and IL-6 response. J Invest Surg. 2017;30(3):143-51. https://doi.org/10.1080/08941939.2016.1230658

Aatif T, Fatihi J, El Annaz H, Qamouss O. Allopurinol-induced drug reactions with eosinophilia and systemic symptoms syndrome with interstitial nephritis. Indian J Nephrol. 2018;28(6):477-81. https://doi.org/10.4103/ijn.IJN_166_17

Malinczak C, Lukacs N, Fonseca W. Early-life respiratory syncytial virus infection, trained immunity and subsequent pulmonary diseases. Viruses. 2020;12(5):505. https://doi.org/10.3390/v12050505

Samuel, Suradi, Sutanto YS. The effects of allopurinol on glutathione sulfhydryl (GSH) serum level, six minute walking test, and CAT score of COPD patients. J Respir Indo. 2019;39(3):169-79. Indonesian.

Stamp LK, Chapman PT, Palmer SC. Allopurinol and kidney function: an update. Joint Bone Spine. 2016;83(1):19-24. https://doi.org/10.1016/j.jbspin.2015.03.013

Goicoechea M, de Vinuesa SG, Verdalles U, Ruiz-Caro C, Ampuero J, Rincón A, et al. Effect of allopurinol in chronic kidney disease progression and cardiovascular risk. Clin J Am Soc Nephrol. 2010;5(8):1388-93. https://doi.org/10.2215/CJN.01580210

Yu KH, Chen DY, Chen JH, Chen SY, Chen SM, Cheng TT, et al. The management of gout and hyperuricemia. In: Hochberg MC, Silman AJ, Smolen JS, Weinblatt ME, weisman MH, editors. Rheumatology. 6th ed. Philadelphia: Elsevier Mosby; 2015. p. 1575-82.

Faruque LI, Ehteshami-Afshar A, Wiebe N, Tjosvold L, Homik J, Tonelli M. A systematic review and meta-analysis on the safety and efficacy of febuxostat versus allopurinol in chronic gout. Semin Arthritis Rheum. 2013;43(3):367-75. https://doi.org/10.1016/j.semarthrit.2013.05.004

Choi H, Neogi T, Stamp L, Dalbeth N, Terkeltaub R. New perspectives in rheumatology: implications of the cardiovascular safety of febuxostat and allopurinol in patients with gout and cardiovascular morbidities trial and the associated food and drug administration public safety alert. Arthritis Rheumatol. 2018;70(11):1702-9. https://doi.org/10.1002/art.40583

Published

2020-11-24

How to Cite

1.
Pratomo IP, Ariane A, Tedjo A, Heryanto R, Paramita RI. Xanthine oxidase inhibition in SARS-CoV-2 infection: the mechanism and potency of allopurinol and febuxostat in COVID-19 management. Med J Indones [Internet]. 2020Nov.24 [cited 2024Dec.22];30(1):75–80. Available from: http://mji.ui.ac.id/journal/index.php/mji/article/view/4641

Issue

Section

Review Article
Abstract viewed = 2140 times
PDF downloaded = 1239 times HTML downloaded = 295 times EPUB downloaded = 157 times