A review of pathobiological mechanisms and potential application of medicinal plants for vascular aging: focus on endothelial cell senescence

Authors

  • Agian Jeffilano Barinda Department of Pharmacology and Therapeutics, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia; Metabolic, Cardiovascular, and Aging Cluster, Indonesia Medical Education and Research Institute (IMERI), Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia https://orcid.org/0000-0002-5864-3725
  • Wawaimuli Arozal Department of Pharmacology and Therapeutics, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia https://orcid.org/0000-0002-8071-9001
  • Shinsuke Yuasa Department of Cardiology, Keio University School of Medicine, Tokyo, Japan

DOI:

https://doi.org/10.13181/mji.rev.226064

Keywords:

artificial intelligence, cellular senescence, deep learning, endothelial cells, medicinal plants
Abstract viewed: 669 times
PDF downloaded: 639 times
HTML downloaded: 175 times
EPUB downloaded: 183 times

Abstract

Endothelial cell (EC) senescence plays a pivotal role in aging and is essential for the pathomechanism of aging-related diseases. Drugs targeting cellular senescence, such as senolytic or senomorphic drugs, may prevent aging and age-related diseases, but these bullets remain undeveloped to target EC senescence. Some medicinal plants may have an anti-senescence property but remain undiscovered. Deep learning has become an emerging approach for drug discovery by simply analyzing cellular morphology-based deep learning. This precious tool would be useful for screening the herb candidate in senescent EC rejuvenescence. Of note, several medicinal plants that can be found in Indonesia such as Curcuma longa L., Piper retrofractum, Guazuma ulmifolia Lam, Centella asiatica (L.) Urb., and Garcinia mangostana L. might potentially possess an anti-senescence effect. This review highlighted the importance of targeting EC senescence, the use of deep learning for medicinal plant screening, and some potential anti-senescence plants originating from Indonesia.

Downloads

Download data is not yet available.

References

Campisi J, Kapahi P, Lithgow GJ, Melov S, Newman JC, Verdin E. From discoveries in ageing research to therapeutics for healthy ageing. Nature. 2019;571:183-92. https://doi.org/10.1038/s41586-019-1365-2

van Deursen JM. The role of senescent cells in ageing. Nature. 2014;509(7501):439-46. https://doi.org/10.1038/nature13193

Hayflick L, Moorhead PS. The serial cultivation of human diploid cell strains. Exp Cell Res. 1961;25:585-621. https://doi.org/10.1016/0014-4827(61)90192-6

Barinda AJ, Ikeda K, Nugroho DB, Wardhana DA, Sasaki N, Honda S, et al. Publisher Correction: Endothelial progeria induces adipose tissue senescence and impairs insulin sensitivity through senescence associated secretory phenotype. Nat Commun. 2020;11(1):3837. https://doi.org/10.1038/s41467-020-14387-w

Baker DJ, Childs BG, Durik M, Wijers ME, Sieben CJ, Zhong J, et al. Naturally occurring p16(Ink4a)-positive cells shorten healthy lifespan. Nature. 2016;530(7589):184-9. https://doi.org/10.1038/nature16932

White NJ, Hien TT, Nosten FH. A brief history of Qinghaosu. Trends Parasitol. 2015;31(12):607-10. https://doi.org/10.1016/j.pt.2015.10.010

Kooti W, Servatyari K, Behzadifar M, Asadi-Samani M, Sadeghi F, Nouri B, et al. Effective medicinal plant in cancer treatment, part 2: review study. J Evid Based Complementary Altern Med. 2017;22(4):982-95. https://doi.org/10.1177/2156587217696927

Arozal W, Louisa M, Soetikno V. Selected Indonesian medicinal plants for the management of metabolic syndrome: molecular basis and recent studies. Front Cardiovasc Med. 2020;7:82. https://doi.org/10.3389/fcvm.2020.00082

Shaito A, Thuan DTB, Phu HT, Nguyen THD, Hasan H, Halabi S, et al. Herbal medicine for cardiovascular diseases: efficacy, mechanisms, and safety. Front Pharmacol. 2020;11:422. https://doi.org/10.3389/fphar.2020.00422

Desborough MJR, Keeling DM. The aspirin story - from willow to wonder drug. Br J Haematol. 2017;177(5):674-83. https://doi.org/10.1111/bjh.14520

Hauptman PJ, Kelly RA. Digitalis. Circulation. 1999;99(9):1265-70. https://doi.org/10.1161/01.CIR.99.9.1265

Shen B. A new golden age of natural products drug discovery. Cell. 2015;163(6):1297-300. https://doi.org/10.1016/j.cell.2015.11.031

Zhang J, Wider B, Shang H, Li X, Ernst E. Quality of herbal medicines: challenges and solutions. Complement Ther Med. 2012;20(1-2):100-6. https://doi.org/10.1016/j.ctim.2011.09.004

Kusumoto D, Yuasa S. The application of convolutional neural network to stem cell biology. Inflamm Regener. 2019;39:14. https://doi.org/10.1186/s41232-019-0103-3

Kusumoto D, Lachmann M, Kunihiro T, Yuasa S, Kishino Y, Kimura M, et al. Automated deep learning-based system to identify endothelial cells derived from induced pluripotent stem cells. Stem Cell Reports. 2018;10(6):1687-95. https://doi.org/10.1016/j.stemcr.2018.04.007

Kusumoto D, Seki T, Sawada H, Kunitomi A, Katsuki T, Kimura M, et al. Anti-senescent drug screening by deep learning-based morphology senescence scoring. Nat Commun. 2021;12:257. https://doi.org/10.1038/s41467-020-20213-0

Virani SS, Alonso A, Benjamin EJ, Bittencourt MS, Callaway CW, Carson AP, et al. Heart disease and stroke statistics-2020 update: a report from the American Heart Association. Circulation. 2020;141(9):e139-596. https://doi.org/10.1161/CIR.0000000000000757

Barodka VM, Joshi BL, Berkowitz DE, Hogue CW Jr, Nyhan D. Review article: implications of vascular aging. Anesth Analg. 2011;112(5):1048-60. https://doi.org/10.1213/ANE.0b013e3182147e3c

Lakatta EG, Levy D. Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises: part I: aging arteries: a "set up" for vascular disease. Circulation. 2003;107(1):139-46. https://doi.org/10.1161/01.CIR.0000048892.83521.58

Ungvari Z, Tarantini S, Donato AJ, Galvan V, Csiszar A. Mechanisms of vascular aging. Circ Res. 2018;123(7):849-67. https://doi.org/10.1161/CIRCRESAHA.118.311378

Rafii S, Butler JM, Ding BS. Angiocrine functions of organ-specific endothelial cells. Nature. 2016;529(7586):316-25. https://doi.org/10.1038/nature17040

Rossman MJ, Kaplon RE, Hill SD, McNamara MN, Santos-Parker JR, Pierce GL, et al. Endothelial cell senescence with aging in healthy humans: prevention by habitual exercise and relation to vascular endothelial function. Am J Physiol Heart Circ Physiol. 2017;313(5):H890-5. https://doi.org/10.1152/ajpheart.00416.2017

Yousefzadeh MJ, Zhao J, Bukata C, Wade EA, McGowan SJ, Angelini LA, et al. Tissue specificity of senescent cell accumulation during physiologic and accelerated aging of mice. Aging Cell. 2020;19(3):e13094. https://doi.org/10.1111/acel.13094

Uraoka M, Ikeda K, Kurimoto-Nakano R, Nakagawa Y, Koide M, Akakabe Y, et al. Loss of Bcl-2 during the senescence exacerbates the impaired angiogenic functions in endothelial cells by deteriorating the mitochondrial redox state. Hypertension. 2011;58(2):254-63. https://doi.org/10.1161/HYPERTENSIONAHA.111.176701

González-Gualda E, Baker AG, Fruk L, Muñoz-Espín D. A guide to assessing cellular senescence in vitro and in vivo. FEBS J. 2021;288(1):56-80. https://doi.org/10.1111/febs.15570

Kumari R, Jat P. Mechanisms of cellular senescence: cell cycle arrest and senescence associated secretory phenotype. Front Cell Dev Biol. 2021;9:645593. https://doi.org/10.3389/fcell.2021.645593

Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature. 2007;447(7145):661-78. https://doi.org/10.1038/nature05911

Schunkert H, König IR, Kathiresan S, Reilly MP, Assimes TL, Holm H, et al. Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease. Nat Genet. 2011;43(4):333-8. https://doi.org/10.1038/ng.784

Hannou SA, Wouters K, Paumelle R, Staels B. Functional genomics of the CDKN2A/B locus in cardiovascular and metabolic disease: what have we learned from GWASs? Trends Endocrinol Metab. 2015;26(4):176-84. https://doi.org/10.1016/j.tem.2015.01.008

He S, Sharpless NE. Senescence in health and disease. Cell. 2017;169(6):1000-11. https://doi.org/10.1016/j.cell.2017.05.015

Minamino T, Miyauchi H, Yoshida T, Ishida Y, Yoshida H, Komuro I. Endothelial cell senescence in human atherosclerosis: role of telomere in endothelial dysfunction. Circulation. 2002;105(13):1541-4. https://doi.org/10.1161/01.CIR.0000013836.85741.17

Tian XL, Li Y. Endothelial cell senescence and age-related vascular diseases. J Genet Genomics. 2014;41(9):485-95. https://doi.org/10.1016/j.jgg.2014.08.001

Wan Y, Liu Z, Wu A, Khan AH, Zhu Y, Ding S, et al. Hyperglycemia promotes endothelial cell senescence through AQR/PLAU signaling axis. Int J Mol Sci. 2022;23(5):2879. https://doi.org/10.3390/ijms23052879

Pellegrinelli V, Rouault C, Veyrie N, Clément K, Lacasa D. Endothelial cells from visceral adipose tissue disrupt adipocyte functions in a three-dimensional setting: partial rescue by angiopoietin-1. Diabetes. 2014;63(2):535-49. https://doi.org/10.2337/db13-0537

Campisi J. Aging, cellular senescence, and cancer. Annu Rev Physiol. 2013;75:685-705. https://doi.org/10.1146/annurev-physiol-030212-183653

Moriya J, Minamino T. Angiogenesis, cancer, and vascular aging. Front Cardiovasc Med. 2017;4:65. https://doi.org/10.3389/fcvm.2017.00065

Nishida N, Yano H, Nishida T, Kamura T, Kojiro M. Angiogenesis in cancer. Vasc Health Risk Manag. 2006;2(3):213-9. https://doi.org/10.2147/vhrm.2006.2.3.213

Tchkonia T, Zhu Y, van Deursen J, Campisi J, Kirkland JL. Cellular senescence and the senescent secretory phenotype: therapeutic opportunities. J Clin Invest. 2013;123(3):966-72. https://doi.org/10.1172/JCI64098

Orjalo AV, Bhaumik D, Gengler BK, Scott GK, Campisi J. Cell surface-bound IL-1alpha is an upstream regulator of the senescence-associated IL-6/IL-8 cytokine network. Proc Natl Acad Sci U S A. 2009;106(40):17031-6. https://doi.org/10.1073/pnas.0905299106

Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C, et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci U S A. 1995;92(20):9363-7. https://doi.org/10.1073/pnas.92.20.9363

Kurz DJ, Decary S, Hong Y, Erusalimsky JD. Senescence-associated (beta)-galactosidase reflects an increase in lysosomal mass during replicative ageing of human endothelial cells. J Cell Sci. 2000;113 ( Pt 20):3613-22. https://doi.org/10.1242/jcs.113.20.3613

Hall BM, Balan V, Gleiberman AS, Strom E, Krasnov P, Virtuoso LP, et al. p16(Ink4a) and senescence-associated v-galactosidase can be induced in macrophages as part of a reversible response to physiological stimuli. Aging (Albany NY). 2017;9(8):1867-84. https://doi.org/10.18632/aging.101268

Frescas D, Hall BM, Strom E, Virtuoso LP, Gupta M, Gleiberman AS, et al. Murine mesenchymal cells that express elevated levels of the CDK inhibitor p16(Ink4a) in vivo are not necessarily senescent. Cell Cycle. 2017;16(16):1526-33. https://doi.org/10.1080/15384101.2017.1339850

Coppé JP, Patil CK, Rodier F, Sun Y, Muñoz DP, Goldstein J, et al. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol. 2008;6(12):2853-68. https://doi.org/10.1371/journal.pbio.0060301

Coppé JP, Patil CK, Rodier F, Krtolica A, Beauséjour CM, Parrinello S, et al. A human-like senescence-associated secretory phenotype is conserved in mouse cells dependent on physiological oxygen. PLoS One. 2010;5(2):e9188. https://doi.org/10.1371/journal.pone.0009188

Kohli J, Wang B, Brandenburg SM, Basisty N, Evangelou K, Varela-Eirin M, et al. Algorithmic assessment of cellular senescence in experimental and clinical specimens. Nat Protoc. 2021;16(5):2471-98. https://doi.org/10.1038/s41596-021-00505-5

Neurohr GE, Terry RL, Lengefeld J, Bonney M, Brittingham GP, Moretto F, et al. Excessive Cell Growth Causes Cytoplasm Dilution And Contributes to senescence. cell. 2019;176(5):1083-97.e18. https://doi.org/10.1016/j.cell.2019.01.018

Barardo DG, Newby D, Thornton D, Ghafourian T, de Magalhães JP, Freitas AA. Machine learning for predicting lifespan-extending chemical compounds. Aging (Albany NY). 2017;9(7):1721-37. https://doi.org/10.18632/aging.101264

Li H, Pang F, Shi Y, Liu Z. Cell dynamic morphology classification using deep convolutional neural networks. Cytometry A. 2018;93(6):628-38. https://doi.org/10.1002/cyto.a.23490

Schubert PJ, Dorkenwald S, Januszewski M, Jain V, Kornfeld J. Learning cellular morphology with neural networks. Nat Commun. 2019;10(1):2736. https://doi.org/10.1038/s41467-019-10836-3

Yao K, Rochman ND, Sun SX. Cell type classification and unsupervised morphological phenotyping from low-resolution images using deep learning. Sci Rep. 2019;9:13467. https://doi.org/10.1038/s41598-019-50010-9

Carmona-Gutierrez D, Zimmermann A, Kainz K, Pietrocola F, Chen G, Maglioni S, et al. The flavonoid 4,4'-dimethoxychalcone promotes autophagy-dependent longevity across species. Nat Commun. 2019;10(1):651. https://doi.org/10.1038/s41467-019-08555-w

Ding AJ, Zheng SQ, Huang XB, Xing TK, Wu GS, Sun HY, et al. Current perspective in the discovery of anti-aging agents from natural products. Nat Prod Bioprospect. 2017;7(5):335-404. https://doi.org/10.1007/s13659-017-0135-9

Zhang W, Huai Y, Miao Z, Qian A, Wang Y. Systems pharmacology for investigation of the mechanisms of action of traditional chinese medicine in drug discovery. Front Pharmacol. 2019;10:743. https://doi.org/10.3389/fphar.2019.00743

Tousian H, Razavi BM, Hosseinzadeh H. Alpha-mangostin decreased cellular senescence in human umbilical vein endothelial cells. Daru. 2020;28(1):45-55. https://doi.org/10.1007/s40199-019-00305-z

Dias DA, Urban S, Roessner U. A historical overview of natural products in drug discovery. Metabolites. 2012;2(2):303-36. https://doi.org/10.3390/metabo2020303

Miner J, Hoffhines A. The discovery of aspirin's antithrombotic effects. Texas Hear Inst J. 2007;34(2):179-86.

Doyle D. Thomas John MacLagan (1838-1903). J R Soc Med. 2012;105(3):131-6. https://doi.org/10.1258/jrsm.2012.12k006

Vane JR, Botting RM. The mechanism of action of aspirin. Thromb Res. 2003;110(5-6):255-8. https://doi.org/10.1016/S0049-3848(03)00379-7

Martien S, Pluquet O, Vercamer C, Malaquin N, Martin N, Gosselin K, et al. Cellular senescence involves an intracrine prostaglandin E2 pathway in human fibroblasts. Biochim Biophys Acta. 2013;1831(7):1217-27. https://doi.org/10.1016/j.bbalip.2013.04.005

Shamalnasab M, Gravel SP, St-Pierre J, Breton L, Jäger S, Aguilaniu H. A salicylic acid derivative extends the lifespan of Caenorhabditis elegans by activating autophagy and the mitochondrial unfolded protein response. Aging Cell. 2018;17(6):e12830. https://doi.org/10.1111/acel.12830

Strong R, Miller RA, Astle CM, Floyd RA, Flurkey K, Hensley KL, et al. Nordihydroguaiaretic acid and aspirin increase lifespan of genetically heterogeneous male mice. Aging Cell. 2008;7(5):641-50. https://doi.org/10.1111/j.1474-9726.2008.00414.x

McNeil JJ, Woods RL, Nelson MR, Reid CM, Kirpach B, Wolfe R, et al. Effect of aspirin on disability-free survival in the healthy elderly. N Engl J Med. 2018;379(16):1499-508. https://doi.org/10.1056/NEJMoa1805819

McNeil JJ, Nelson MR, Woods RL, Lockery JE, Wolfe R, Reid CM, et al. Effect of aspirin on all-cause mortality in the healthy elderly. N Engl J Med. 2018;379:1519-28. https://doi.org/10.1056/NEJMoa1800722

Marshall SM. 60 years of metformin use: a glance at the past and a look to the future. Diabetologia. 2017;60(9):1561-5. https://doi.org/10.1007/s00125-017-4343-y

Foretz M, Guigas B, Viollet B. Understanding the glucoregulatory mechanisms of metformin in type 2 diabetes mellitus. Nat Rev Endocrinol. 2019;15(10):569-89. https://doi.org/10.1038/s41574-019-0242-2

Griffin SJ, Leaver JK, Irving GJ. Impact of metformin on cardiovascular disease: a meta-analysis of randomised trials among people with type 2 diabetes. Diabetologia. 2017;60(9):1620-9. https://doi.org/10.1007/s00125-017-4337-9

Rangarajan S, Bone NB, Zmijewska AA, Jiang S, Park DW, Bernard K, et al. Metformin reverses established lung fibrosis in a bleomycin model. Nat Med. 2018;24(8):1121-7. https://doi.org/10.1038/s41591-018-0087-6

Hung MS, Chuang MC, Chen YC, Lee CP, Yang TM, Chen PC, et al. Metformin prolongs survival in type 2 diabetes lung cancer patients with EGFR-TKIs. Integr Cancer Ther. 2019;18:1534735419869491. https://doi.org/10.1177/1534735419869491

Kim HJ, Kwon H, Lee JW, Kim HJ, Lee SB, Park HS, et al. Metformin increases survival in hormone receptor-positive, HER2-positive breast cancer patients with diabetes. Breast Cancer Res. 2015;17(1):64. https://doi.org/10.1186/s13058-015-0574-3

Luchsinger JA, Perez T, Chang H, Mehta P, Steffener J, Pradabhan G, et al. Metformin in amnestic mild cognitive impairment: results of a pilot randomized placebo controlled clinical trial. J Alzheimers Dis. 2016;51(2):501-14. https://doi.org/10.3233/JAD-150493

Ng TP, Feng L, Yap KB, Lee TS, Tan CH, Winblad B. Long-term metformin usage and cognitive function among older adults with diabetes. J Alzheimers Dis. 2014;41(1):61-8. https://doi.org/10.3233/JAD-131901

Martin-Montalvo A, Mercken EM, Mitchell SJ, Palacios HH, Mote PL, Scheibye-Knudsen M, et al. Metformin improves healthspan and lifespan in mice. Nat Commun. 2013;4:2192. https://doi.org/10.1038/ncomms3192

Bannister CA, Holden SE, Jenkins-Jones S, Morgan CL, Halcox JP, Schernthaner G, et al. Can people with type 2 diabetes live longer than those without? A comparison of mortality in people initiated with metformin or sulphonylurea monotherapy and matched, non-diabetic controls. Diabetes Obes Metab. 2014;16(11):1165-73. https://doi.org/10.1111/dom.12354

Justice JN, Ferrucci L, Newman AB, Aroda VR, Bahnson JL, Divers J, et al. A framework for selection of blood-based biomarkers for geroscience-guided clinical trials: report from the TAME Biomarkers Workgroup. Geroscience. 2018;40(5-6):419-36. https://doi.org/10.1007/s11357-018-0042-y

von Rintelen K, Arida E, Häuser C. A review of biodiversity-related issues and challenges in megadiverse Indonesia and other Southeast Asian countries. Res Ideas Outcomes. 2017;3:e20860. https://doi.org/10.3897/rio.3.e20860

Elfahmi, Woerdenbag HJ, Kayser O. Jamu: Indonesian traditional herbal medicine towards rational phytopharmacological use. J Herb Med. 2014;4(2):51-73. https://doi.org/10.1016/j.hermed.2014.01.002

Fadus MC, Lau C, Bikhchandani J, Lynch HT. Curcumin: an age-old anti-inflammatory and anti-neoplastic agent. J Tradit Complement Med. 2016;7(3):339-46. https://doi.org/10.1016/j.jtcme.2016.08.002

Barinda AJ, Arozal W, Sandhiutami NMD, Louisa M, Arfian N, Sandora N, et al. Curcumin prevents epithelial-to mesenchymal transition-mediated ovarian cancer progression through NRF2/ETBR/ET-1 axis and preserves mitochondria biogenesis in kidney after cisplatin administration. Adv Pharm Bull. 2022;12(1):128-41. https://doi.org/10.34172/apb.2022.014.

Thota RN, Dias CB, Abbott KA, Acharya SH, Garg ML. Curcumin alleviates postprandial glycaemic response in healthy subjects: a cross-over, randomized controlled study. Sci Rep. 2018;8:13679. https://doi.org/10.1038/s41598-018-32032-x

Shen LR, Xiao F, Yuan P, Chen Y, Gao QK, Parnell LD, et al. Curcumin-supplemented diets increase superoxide dismutase activity and mean lifespan in Drosophila. Age (Dordr). 2013;35(4):1133-42. https://doi.org/10.1007/s11357-012-9438-2

Bielak-Zmijewska A, Grabowska W, Ciolko A, Bojko A, Mosieniak G, Bijoch ?, et al. The role of curcumin in the modulation of ageing. Int J Mol Sci. 2019;20(5):1239. https://doi.org/10.3390/ijms20051239

Mosieniak G, Adamowicz M, Alster O, Jaskowiak H, Szczepankiewicz AA, Wilczynski GM, et al. Curcumin induces permanent growth arrest of human colon cancer cells: link between senescence and autophagy. Mech Ageing Dev. 2012;133(6):444-55. https://doi.org/10.1016/j.mad.2012.05.004

Mollazade M, Nejati-Koshki K, Akbarzadeh A, Zarghami N, Nasiri M, Jahanban-Esfahlan R, et al. PAMAM dendrimers augment inhibitory effects of curcumin on cancer cell proliferation: possible inhibition of telomerase. Asian Pac J Cancer Prev. 2013;14(11):6925-8. https://doi.org/10.7314/APJCP.2013.14.11.6925

Takahashi M, Hirose N, Ohno S, Arakaki M, Wada K. Flavor characteristics and antioxidant capacities of hihatsumodoki (Piper retrofractum Vahl) fresh fruit at three edible maturity stages. J Food Sci Technol. 2018;55(4):1295-305. https://doi.org/10.1007/s13197-018-3040-2

Wang Y, Chang J, Liu X, Zhang X, Zhang S, Zhang X, et al. Discovery of piperlongumine as a potential novel lead for the development of senolytic agents. Aging (Albany NY). 2016;8(11):2915-26. https://doi.org/10.18632/aging.101100

Zhang X, Zhang S, Liu X, Wang Y, Chang J, Zhang X, et al. Oxidation resistance 1 is a novel senolytic target. Aging Cell. 2018;17(4):e12780. https://doi.org/10.1111/acel.12780

Magos GA, Mateos JC, Páez E, Fernández G, Lobato C, Márquez C, et al. Hypotensive and vasorelaxant effects of the procyanidin fraction from Guazuma ulmifolia bark in normotensive and hypertensive rats. J Ethnopharmacol. 2008;117(1):58-68. https://doi.org/10.1016/j.jep.2008.01.015

Liu X, Lin X, Mi Y, Li J, Zhang C. Grape seed proanthocyanidin extract prevents ovarian aging by inhibiting oxidative stress in the hens. Oxid Med Cell Longev. 2018;2018:9390810. https://doi.org/10.1155/2018/9390810

Wan W, Zhu W, Wu Y, Long Y, Liu H, Wan W, et al. Grape seed proanthocyanidin extract moderated retinal pigment epithelium cellular senescence through NAMPT/SIRT1/NLRP3 pathway. J Inflamm Res. 2021;14:3129-43. https://doi.org/10.2147/JIR.S306456

Lee YA, Cho EJ, Yokozawa T. Protective effect of persimmon (Diospyros kaki) peel proanthocyanidin against oxidative damage under H2O2-induced cellular senescence. Biol Pharm Bull. 2008;31(6):1265-9. https://doi.org/10.1248/bpb.31.1265

Sun B, Wu L, Wu Y, Zhang C, Qin L, Hayashi M, et al. Therapeutic potential of Centella asiatica and its triterpenes: a review. Front Pharmacol. 2020;11:568032. https://doi.org/10.3389/fphar.2020.568032

Bylka W, Znajdek-Awi?e? P, Studzi?ska-Sroka E, Da?czak-Pazdrowska A, Brzezi?ska M. Centella asiatica in dermatology: an overview. Phytother Res. 2014;28(8):1117-24. https://doi.org/10.1002/ptr.5110

Kim YJ, Cha HJ, Nam KH, Yoon Y, Lee H, An S. Centella asiatica extracts modulate hydrogen peroxide-induced senescence in human dermal fibroblasts. Exp Dermatol. 2011;20(12):998-1003. https://doi.org/10.1111/j.1600-0625.2011.01388.x

Abdul Hisam EE, Rofiee MS, Khalid AM, Jalaluddin AF, Mohamad Yusof MI, Idris MH, et al. Combined extract of Moringa oleifera and Centella asiatica modulates oxidative stress and senescence in hydrogen peroxide-induced human dermal fibroblasts. Turk J Biol. 2018;42(1):33-44. https://doi.org/10.3906/biy-1708-23

Gutierrez-Orozco F, Failla M. Biological activities and bioavailability of mangosteen xanthones: a critical review of the current evidence. Nutrients. 2013;5(8):3163-83. https://doi.org/10.3390/nu5083163

Adenina S, Louisa M, Soetikno V, Arozal W, Wanandi SI. The effect of alpha mangostin on epithelial-mesenchymal transition on human hepatocellular carcinoma HepG2 cells surviving sorafenib via TGF-v/smad pathways. Adv Pharm Bull. 2020;10(4):648-55. https://doi.org/10.34172/apb.2020.078

Lestari N, Louisa M, Soetikno V, Suwana AG, Ramadhan PA, Akmal T, et al. Alpha mangostin inhibits the proliferation and activation of acetaldehyde induced hepatic stellate cells through TGF-v and ERK 1/2 pathways. J Toxicol. 2018;2018:5360496. https://doi.org/10.1155/2018/5360496

Published

2022-08-26

How to Cite

1.
Barinda AJ, Arozal W, Yuasa S. A review of pathobiological mechanisms and potential application of medicinal plants for vascular aging: focus on endothelial cell senescence. Med J Indones [Internet]. 2022Aug.26 [cited 2024Dec.21];31(2):132-40. Available from: http://mji.ui.ac.id/journal/index.php/mji/article/view/6064

Issue

Section

Review Article
Abstract viewed = 669 times
PDF downloaded = 639 times HTML downloaded = 175 times EPUB downloaded = 183 times

Most read articles by the same author(s)