A review of pathobiological mechanisms and potential application of medicinal plants for vascular aging: focus on endothelial cell senescence
DOI:
https://doi.org/10.13181/mji.rev.226064Keywords:
artificial intelligence, cellular senescence, deep learning, endothelial cells, medicinal plantsAbstract
Endothelial cell (EC) senescence plays a pivotal role in aging and is essential for the pathomechanism of aging-related diseases. Drugs targeting cellular senescence, such as senolytic or senomorphic drugs, may prevent aging and age-related diseases, but these bullets remain undeveloped to target EC senescence. Some medicinal plants may have an anti-senescence property but remain undiscovered. Deep learning has become an emerging approach for drug discovery by simply analyzing cellular morphology-based deep learning. This precious tool would be useful for screening the herb candidate in senescent EC rejuvenescence. Of note, several medicinal plants that can be found in Indonesia such as Curcuma longa L., Piper retrofractum, Guazuma ulmifolia Lam, Centella asiatica (L.) Urb., and Garcinia mangostana L. might potentially possess an anti-senescence effect. This review highlighted the importance of targeting EC senescence, the use of deep learning for medicinal plant screening, and some potential anti-senescence plants originating from Indonesia.
Downloads
References
Campisi J, Kapahi P, Lithgow GJ, Melov S, Newman JC, Verdin E. From discoveries in ageing research to therapeutics for healthy ageing. Nature. 2019;571:183-92. https://doi.org/10.1038/s41586-019-1365-2
van Deursen JM. The role of senescent cells in ageing. Nature. 2014;509(7501):439-46. https://doi.org/10.1038/nature13193
Hayflick L, Moorhead PS. The serial cultivation of human diploid cell strains. Exp Cell Res. 1961;25:585-621. https://doi.org/10.1016/0014-4827(61)90192-6
Barinda AJ, Ikeda K, Nugroho DB, Wardhana DA, Sasaki N, Honda S, et al. Publisher Correction: Endothelial progeria induces adipose tissue senescence and impairs insulin sensitivity through senescence associated secretory phenotype. Nat Commun. 2020;11(1):3837. https://doi.org/10.1038/s41467-020-14387-w
Baker DJ, Childs BG, Durik M, Wijers ME, Sieben CJ, Zhong J, et al. Naturally occurring p16(Ink4a)-positive cells shorten healthy lifespan. Nature. 2016;530(7589):184-9. https://doi.org/10.1038/nature16932
White NJ, Hien TT, Nosten FH. A brief history of Qinghaosu. Trends Parasitol. 2015;31(12):607-10. https://doi.org/10.1016/j.pt.2015.10.010
Kooti W, Servatyari K, Behzadifar M, Asadi-Samani M, Sadeghi F, Nouri B, et al. Effective medicinal plant in cancer treatment, part 2: review study. J Evid Based Complementary Altern Med. 2017;22(4):982-95. https://doi.org/10.1177/2156587217696927
Arozal W, Louisa M, Soetikno V. Selected Indonesian medicinal plants for the management of metabolic syndrome: molecular basis and recent studies. Front Cardiovasc Med. 2020;7:82. https://doi.org/10.3389/fcvm.2020.00082
Shaito A, Thuan DTB, Phu HT, Nguyen THD, Hasan H, Halabi S, et al. Herbal medicine for cardiovascular diseases: efficacy, mechanisms, and safety. Front Pharmacol. 2020;11:422. https://doi.org/10.3389/fphar.2020.00422
Desborough MJR, Keeling DM. The aspirin story - from willow to wonder drug. Br J Haematol. 2017;177(5):674-83. https://doi.org/10.1111/bjh.14520
Hauptman PJ, Kelly RA. Digitalis. Circulation. 1999;99(9):1265-70. https://doi.org/10.1161/01.CIR.99.9.1265
Shen B. A new golden age of natural products drug discovery. Cell. 2015;163(6):1297-300. https://doi.org/10.1016/j.cell.2015.11.031
Zhang J, Wider B, Shang H, Li X, Ernst E. Quality of herbal medicines: challenges and solutions. Complement Ther Med. 2012;20(1-2):100-6. https://doi.org/10.1016/j.ctim.2011.09.004
Kusumoto D, Yuasa S. The application of convolutional neural network to stem cell biology. Inflamm Regener. 2019;39:14. https://doi.org/10.1186/s41232-019-0103-3
Kusumoto D, Lachmann M, Kunihiro T, Yuasa S, Kishino Y, Kimura M, et al. Automated deep learning-based system to identify endothelial cells derived from induced pluripotent stem cells. Stem Cell Reports. 2018;10(6):1687-95. https://doi.org/10.1016/j.stemcr.2018.04.007
Kusumoto D, Seki T, Sawada H, Kunitomi A, Katsuki T, Kimura M, et al. Anti-senescent drug screening by deep learning-based morphology senescence scoring. Nat Commun. 2021;12:257. https://doi.org/10.1038/s41467-020-20213-0
Virani SS, Alonso A, Benjamin EJ, Bittencourt MS, Callaway CW, Carson AP, et al. Heart disease and stroke statistics-2020 update: a report from the American Heart Association. Circulation. 2020;141(9):e139-596. https://doi.org/10.1161/CIR.0000000000000757
Barodka VM, Joshi BL, Berkowitz DE, Hogue CW Jr, Nyhan D. Review article: implications of vascular aging. Anesth Analg. 2011;112(5):1048-60. https://doi.org/10.1213/ANE.0b013e3182147e3c
Lakatta EG, Levy D. Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises: part I: aging arteries: a "set up" for vascular disease. Circulation. 2003;107(1):139-46. https://doi.org/10.1161/01.CIR.0000048892.83521.58
Ungvari Z, Tarantini S, Donato AJ, Galvan V, Csiszar A. Mechanisms of vascular aging. Circ Res. 2018;123(7):849-67. https://doi.org/10.1161/CIRCRESAHA.118.311378
Rafii S, Butler JM, Ding BS. Angiocrine functions of organ-specific endothelial cells. Nature. 2016;529(7586):316-25. https://doi.org/10.1038/nature17040
Rossman MJ, Kaplon RE, Hill SD, McNamara MN, Santos-Parker JR, Pierce GL, et al. Endothelial cell senescence with aging in healthy humans: prevention by habitual exercise and relation to vascular endothelial function. Am J Physiol Heart Circ Physiol. 2017;313(5):H890-5. https://doi.org/10.1152/ajpheart.00416.2017
Yousefzadeh MJ, Zhao J, Bukata C, Wade EA, McGowan SJ, Angelini LA, et al. Tissue specificity of senescent cell accumulation during physiologic and accelerated aging of mice. Aging Cell. 2020;19(3):e13094. https://doi.org/10.1111/acel.13094
Uraoka M, Ikeda K, Kurimoto-Nakano R, Nakagawa Y, Koide M, Akakabe Y, et al. Loss of Bcl-2 during the senescence exacerbates the impaired angiogenic functions in endothelial cells by deteriorating the mitochondrial redox state. Hypertension. 2011;58(2):254-63. https://doi.org/10.1161/HYPERTENSIONAHA.111.176701
González-Gualda E, Baker AG, Fruk L, Muñoz-Espín D. A guide to assessing cellular senescence in vitro and in vivo. FEBS J. 2021;288(1):56-80. https://doi.org/10.1111/febs.15570
Kumari R, Jat P. Mechanisms of cellular senescence: cell cycle arrest and senescence associated secretory phenotype. Front Cell Dev Biol. 2021;9:645593. https://doi.org/10.3389/fcell.2021.645593
Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature. 2007;447(7145):661-78. https://doi.org/10.1038/nature05911
Schunkert H, König IR, Kathiresan S, Reilly MP, Assimes TL, Holm H, et al. Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease. Nat Genet. 2011;43(4):333-8. https://doi.org/10.1038/ng.784
Hannou SA, Wouters K, Paumelle R, Staels B. Functional genomics of the CDKN2A/B locus in cardiovascular and metabolic disease: what have we learned from GWASs? Trends Endocrinol Metab. 2015;26(4):176-84. https://doi.org/10.1016/j.tem.2015.01.008
He S, Sharpless NE. Senescence in health and disease. Cell. 2017;169(6):1000-11. https://doi.org/10.1016/j.cell.2017.05.015
Minamino T, Miyauchi H, Yoshida T, Ishida Y, Yoshida H, Komuro I. Endothelial cell senescence in human atherosclerosis: role of telomere in endothelial dysfunction. Circulation. 2002;105(13):1541-4. https://doi.org/10.1161/01.CIR.0000013836.85741.17
Tian XL, Li Y. Endothelial cell senescence and age-related vascular diseases. J Genet Genomics. 2014;41(9):485-95. https://doi.org/10.1016/j.jgg.2014.08.001
Wan Y, Liu Z, Wu A, Khan AH, Zhu Y, Ding S, et al. Hyperglycemia promotes endothelial cell senescence through AQR/PLAU signaling axis. Int J Mol Sci. 2022;23(5):2879. https://doi.org/10.3390/ijms23052879
Pellegrinelli V, Rouault C, Veyrie N, Clément K, Lacasa D. Endothelial cells from visceral adipose tissue disrupt adipocyte functions in a three-dimensional setting: partial rescue by angiopoietin-1. Diabetes. 2014;63(2):535-49. https://doi.org/10.2337/db13-0537
Campisi J. Aging, cellular senescence, and cancer. Annu Rev Physiol. 2013;75:685-705. https://doi.org/10.1146/annurev-physiol-030212-183653
Moriya J, Minamino T. Angiogenesis, cancer, and vascular aging. Front Cardiovasc Med. 2017;4:65. https://doi.org/10.3389/fcvm.2017.00065
Nishida N, Yano H, Nishida T, Kamura T, Kojiro M. Angiogenesis in cancer. Vasc Health Risk Manag. 2006;2(3):213-9. https://doi.org/10.2147/vhrm.2006.2.3.213
Tchkonia T, Zhu Y, van Deursen J, Campisi J, Kirkland JL. Cellular senescence and the senescent secretory phenotype: therapeutic opportunities. J Clin Invest. 2013;123(3):966-72. https://doi.org/10.1172/JCI64098
Orjalo AV, Bhaumik D, Gengler BK, Scott GK, Campisi J. Cell surface-bound IL-1alpha is an upstream regulator of the senescence-associated IL-6/IL-8 cytokine network. Proc Natl Acad Sci U S A. 2009;106(40):17031-6. https://doi.org/10.1073/pnas.0905299106
Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C, et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci U S A. 1995;92(20):9363-7. https://doi.org/10.1073/pnas.92.20.9363
Kurz DJ, Decary S, Hong Y, Erusalimsky JD. Senescence-associated (beta)-galactosidase reflects an increase in lysosomal mass during replicative ageing of human endothelial cells. J Cell Sci. 2000;113 ( Pt 20):3613-22. https://doi.org/10.1242/jcs.113.20.3613
Hall BM, Balan V, Gleiberman AS, Strom E, Krasnov P, Virtuoso LP, et al. p16(Ink4a) and senescence-associated v-galactosidase can be induced in macrophages as part of a reversible response to physiological stimuli. Aging (Albany NY). 2017;9(8):1867-84. https://doi.org/10.18632/aging.101268
Frescas D, Hall BM, Strom E, Virtuoso LP, Gupta M, Gleiberman AS, et al. Murine mesenchymal cells that express elevated levels of the CDK inhibitor p16(Ink4a) in vivo are not necessarily senescent. Cell Cycle. 2017;16(16):1526-33. https://doi.org/10.1080/15384101.2017.1339850
Coppé JP, Patil CK, Rodier F, Sun Y, Muñoz DP, Goldstein J, et al. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol. 2008;6(12):2853-68. https://doi.org/10.1371/journal.pbio.0060301
Coppé JP, Patil CK, Rodier F, Krtolica A, Beauséjour CM, Parrinello S, et al. A human-like senescence-associated secretory phenotype is conserved in mouse cells dependent on physiological oxygen. PLoS One. 2010;5(2):e9188. https://doi.org/10.1371/journal.pone.0009188
Kohli J, Wang B, Brandenburg SM, Basisty N, Evangelou K, Varela-Eirin M, et al. Algorithmic assessment of cellular senescence in experimental and clinical specimens. Nat Protoc. 2021;16(5):2471-98. https://doi.org/10.1038/s41596-021-00505-5
Neurohr GE, Terry RL, Lengefeld J, Bonney M, Brittingham GP, Moretto F, et al. Excessive Cell Growth Causes Cytoplasm Dilution And Contributes to senescence. cell. 2019;176(5):1083-97.e18. https://doi.org/10.1016/j.cell.2019.01.018
Barardo DG, Newby D, Thornton D, Ghafourian T, de Magalhães JP, Freitas AA. Machine learning for predicting lifespan-extending chemical compounds. Aging (Albany NY). 2017;9(7):1721-37. https://doi.org/10.18632/aging.101264
Li H, Pang F, Shi Y, Liu Z. Cell dynamic morphology classification using deep convolutional neural networks. Cytometry A. 2018;93(6):628-38. https://doi.org/10.1002/cyto.a.23490
Schubert PJ, Dorkenwald S, Januszewski M, Jain V, Kornfeld J. Learning cellular morphology with neural networks. Nat Commun. 2019;10(1):2736. https://doi.org/10.1038/s41467-019-10836-3
Yao K, Rochman ND, Sun SX. Cell type classification and unsupervised morphological phenotyping from low-resolution images using deep learning. Sci Rep. 2019;9:13467. https://doi.org/10.1038/s41598-019-50010-9
Carmona-Gutierrez D, Zimmermann A, Kainz K, Pietrocola F, Chen G, Maglioni S, et al. The flavonoid 4,4'-dimethoxychalcone promotes autophagy-dependent longevity across species. Nat Commun. 2019;10(1):651. https://doi.org/10.1038/s41467-019-08555-w
Ding AJ, Zheng SQ, Huang XB, Xing TK, Wu GS, Sun HY, et al. Current perspective in the discovery of anti-aging agents from natural products. Nat Prod Bioprospect. 2017;7(5):335-404. https://doi.org/10.1007/s13659-017-0135-9
Zhang W, Huai Y, Miao Z, Qian A, Wang Y. Systems pharmacology for investigation of the mechanisms of action of traditional chinese medicine in drug discovery. Front Pharmacol. 2019;10:743. https://doi.org/10.3389/fphar.2019.00743
Tousian H, Razavi BM, Hosseinzadeh H. Alpha-mangostin decreased cellular senescence in human umbilical vein endothelial cells. Daru. 2020;28(1):45-55. https://doi.org/10.1007/s40199-019-00305-z
Dias DA, Urban S, Roessner U. A historical overview of natural products in drug discovery. Metabolites. 2012;2(2):303-36. https://doi.org/10.3390/metabo2020303
Miner J, Hoffhines A. The discovery of aspirin's antithrombotic effects. Texas Hear Inst J. 2007;34(2):179-86.
Doyle D. Thomas John MacLagan (1838-1903). J R Soc Med. 2012;105(3):131-6. https://doi.org/10.1258/jrsm.2012.12k006
Vane JR, Botting RM. The mechanism of action of aspirin. Thromb Res. 2003;110(5-6):255-8. https://doi.org/10.1016/S0049-3848(03)00379-7
Martien S, Pluquet O, Vercamer C, Malaquin N, Martin N, Gosselin K, et al. Cellular senescence involves an intracrine prostaglandin E2 pathway in human fibroblasts. Biochim Biophys Acta. 2013;1831(7):1217-27. https://doi.org/10.1016/j.bbalip.2013.04.005
Shamalnasab M, Gravel SP, St-Pierre J, Breton L, Jäger S, Aguilaniu H. A salicylic acid derivative extends the lifespan of Caenorhabditis elegans by activating autophagy and the mitochondrial unfolded protein response. Aging Cell. 2018;17(6):e12830. https://doi.org/10.1111/acel.12830
Strong R, Miller RA, Astle CM, Floyd RA, Flurkey K, Hensley KL, et al. Nordihydroguaiaretic acid and aspirin increase lifespan of genetically heterogeneous male mice. Aging Cell. 2008;7(5):641-50. https://doi.org/10.1111/j.1474-9726.2008.00414.x
McNeil JJ, Woods RL, Nelson MR, Reid CM, Kirpach B, Wolfe R, et al. Effect of aspirin on disability-free survival in the healthy elderly. N Engl J Med. 2018;379(16):1499-508. https://doi.org/10.1056/NEJMoa1805819
McNeil JJ, Nelson MR, Woods RL, Lockery JE, Wolfe R, Reid CM, et al. Effect of aspirin on all-cause mortality in the healthy elderly. N Engl J Med. 2018;379:1519-28. https://doi.org/10.1056/NEJMoa1800722
Marshall SM. 60 years of metformin use: a glance at the past and a look to the future. Diabetologia. 2017;60(9):1561-5. https://doi.org/10.1007/s00125-017-4343-y
Foretz M, Guigas B, Viollet B. Understanding the glucoregulatory mechanisms of metformin in type 2 diabetes mellitus. Nat Rev Endocrinol. 2019;15(10):569-89. https://doi.org/10.1038/s41574-019-0242-2
Griffin SJ, Leaver JK, Irving GJ. Impact of metformin on cardiovascular disease: a meta-analysis of randomised trials among people with type 2 diabetes. Diabetologia. 2017;60(9):1620-9. https://doi.org/10.1007/s00125-017-4337-9
Rangarajan S, Bone NB, Zmijewska AA, Jiang S, Park DW, Bernard K, et al. Metformin reverses established lung fibrosis in a bleomycin model. Nat Med. 2018;24(8):1121-7. https://doi.org/10.1038/s41591-018-0087-6
Hung MS, Chuang MC, Chen YC, Lee CP, Yang TM, Chen PC, et al. Metformin prolongs survival in type 2 diabetes lung cancer patients with EGFR-TKIs. Integr Cancer Ther. 2019;18:1534735419869491. https://doi.org/10.1177/1534735419869491
Kim HJ, Kwon H, Lee JW, Kim HJ, Lee SB, Park HS, et al. Metformin increases survival in hormone receptor-positive, HER2-positive breast cancer patients with diabetes. Breast Cancer Res. 2015;17(1):64. https://doi.org/10.1186/s13058-015-0574-3
Luchsinger JA, Perez T, Chang H, Mehta P, Steffener J, Pradabhan G, et al. Metformin in amnestic mild cognitive impairment: results of a pilot randomized placebo controlled clinical trial. J Alzheimers Dis. 2016;51(2):501-14. https://doi.org/10.3233/JAD-150493
Ng TP, Feng L, Yap KB, Lee TS, Tan CH, Winblad B. Long-term metformin usage and cognitive function among older adults with diabetes. J Alzheimers Dis. 2014;41(1):61-8. https://doi.org/10.3233/JAD-131901
Martin-Montalvo A, Mercken EM, Mitchell SJ, Palacios HH, Mote PL, Scheibye-Knudsen M, et al. Metformin improves healthspan and lifespan in mice. Nat Commun. 2013;4:2192. https://doi.org/10.1038/ncomms3192
Bannister CA, Holden SE, Jenkins-Jones S, Morgan CL, Halcox JP, Schernthaner G, et al. Can people with type 2 diabetes live longer than those without? A comparison of mortality in people initiated with metformin or sulphonylurea monotherapy and matched, non-diabetic controls. Diabetes Obes Metab. 2014;16(11):1165-73. https://doi.org/10.1111/dom.12354
Justice JN, Ferrucci L, Newman AB, Aroda VR, Bahnson JL, Divers J, et al. A framework for selection of blood-based biomarkers for geroscience-guided clinical trials: report from the TAME Biomarkers Workgroup. Geroscience. 2018;40(5-6):419-36. https://doi.org/10.1007/s11357-018-0042-y
von Rintelen K, Arida E, Häuser C. A review of biodiversity-related issues and challenges in megadiverse Indonesia and other Southeast Asian countries. Res Ideas Outcomes. 2017;3:e20860. https://doi.org/10.3897/rio.3.e20860
Elfahmi, Woerdenbag HJ, Kayser O. Jamu: Indonesian traditional herbal medicine towards rational phytopharmacological use. J Herb Med. 2014;4(2):51-73. https://doi.org/10.1016/j.hermed.2014.01.002
Fadus MC, Lau C, Bikhchandani J, Lynch HT. Curcumin: an age-old anti-inflammatory and anti-neoplastic agent. J Tradit Complement Med. 2016;7(3):339-46. https://doi.org/10.1016/j.jtcme.2016.08.002
Barinda AJ, Arozal W, Sandhiutami NMD, Louisa M, Arfian N, Sandora N, et al. Curcumin prevents epithelial-to mesenchymal transition-mediated ovarian cancer progression through NRF2/ETBR/ET-1 axis and preserves mitochondria biogenesis in kidney after cisplatin administration. Adv Pharm Bull. 2022;12(1):128-41. https://doi.org/10.34172/apb.2022.014.
Thota RN, Dias CB, Abbott KA, Acharya SH, Garg ML. Curcumin alleviates postprandial glycaemic response in healthy subjects: a cross-over, randomized controlled study. Sci Rep. 2018;8:13679. https://doi.org/10.1038/s41598-018-32032-x
Shen LR, Xiao F, Yuan P, Chen Y, Gao QK, Parnell LD, et al. Curcumin-supplemented diets increase superoxide dismutase activity and mean lifespan in Drosophila. Age (Dordr). 2013;35(4):1133-42. https://doi.org/10.1007/s11357-012-9438-2
Bielak-Zmijewska A, Grabowska W, Ciolko A, Bojko A, Mosieniak G, Bijoch ?, et al. The role of curcumin in the modulation of ageing. Int J Mol Sci. 2019;20(5):1239. https://doi.org/10.3390/ijms20051239
Mosieniak G, Adamowicz M, Alster O, Jaskowiak H, Szczepankiewicz AA, Wilczynski GM, et al. Curcumin induces permanent growth arrest of human colon cancer cells: link between senescence and autophagy. Mech Ageing Dev. 2012;133(6):444-55. https://doi.org/10.1016/j.mad.2012.05.004
Mollazade M, Nejati-Koshki K, Akbarzadeh A, Zarghami N, Nasiri M, Jahanban-Esfahlan R, et al. PAMAM dendrimers augment inhibitory effects of curcumin on cancer cell proliferation: possible inhibition of telomerase. Asian Pac J Cancer Prev. 2013;14(11):6925-8. https://doi.org/10.7314/APJCP.2013.14.11.6925
Takahashi M, Hirose N, Ohno S, Arakaki M, Wada K. Flavor characteristics and antioxidant capacities of hihatsumodoki (Piper retrofractum Vahl) fresh fruit at three edible maturity stages. J Food Sci Technol. 2018;55(4):1295-305. https://doi.org/10.1007/s13197-018-3040-2
Wang Y, Chang J, Liu X, Zhang X, Zhang S, Zhang X, et al. Discovery of piperlongumine as a potential novel lead for the development of senolytic agents. Aging (Albany NY). 2016;8(11):2915-26. https://doi.org/10.18632/aging.101100
Zhang X, Zhang S, Liu X, Wang Y, Chang J, Zhang X, et al. Oxidation resistance 1 is a novel senolytic target. Aging Cell. 2018;17(4):e12780. https://doi.org/10.1111/acel.12780
Magos GA, Mateos JC, Páez E, Fernández G, Lobato C, Márquez C, et al. Hypotensive and vasorelaxant effects of the procyanidin fraction from Guazuma ulmifolia bark in normotensive and hypertensive rats. J Ethnopharmacol. 2008;117(1):58-68. https://doi.org/10.1016/j.jep.2008.01.015
Liu X, Lin X, Mi Y, Li J, Zhang C. Grape seed proanthocyanidin extract prevents ovarian aging by inhibiting oxidative stress in the hens. Oxid Med Cell Longev. 2018;2018:9390810. https://doi.org/10.1155/2018/9390810
Wan W, Zhu W, Wu Y, Long Y, Liu H, Wan W, et al. Grape seed proanthocyanidin extract moderated retinal pigment epithelium cellular senescence through NAMPT/SIRT1/NLRP3 pathway. J Inflamm Res. 2021;14:3129-43. https://doi.org/10.2147/JIR.S306456
Lee YA, Cho EJ, Yokozawa T. Protective effect of persimmon (Diospyros kaki) peel proanthocyanidin against oxidative damage under H2O2-induced cellular senescence. Biol Pharm Bull. 2008;31(6):1265-9. https://doi.org/10.1248/bpb.31.1265
Sun B, Wu L, Wu Y, Zhang C, Qin L, Hayashi M, et al. Therapeutic potential of Centella asiatica and its triterpenes: a review. Front Pharmacol. 2020;11:568032. https://doi.org/10.3389/fphar.2020.568032
Bylka W, Znajdek-Awi?e? P, Studzi?ska-Sroka E, Da?czak-Pazdrowska A, Brzezi?ska M. Centella asiatica in dermatology: an overview. Phytother Res. 2014;28(8):1117-24. https://doi.org/10.1002/ptr.5110
Kim YJ, Cha HJ, Nam KH, Yoon Y, Lee H, An S. Centella asiatica extracts modulate hydrogen peroxide-induced senescence in human dermal fibroblasts. Exp Dermatol. 2011;20(12):998-1003. https://doi.org/10.1111/j.1600-0625.2011.01388.x
Abdul Hisam EE, Rofiee MS, Khalid AM, Jalaluddin AF, Mohamad Yusof MI, Idris MH, et al. Combined extract of Moringa oleifera and Centella asiatica modulates oxidative stress and senescence in hydrogen peroxide-induced human dermal fibroblasts. Turk J Biol. 2018;42(1):33-44. https://doi.org/10.3906/biy-1708-23
Gutierrez-Orozco F, Failla M. Biological activities and bioavailability of mangosteen xanthones: a critical review of the current evidence. Nutrients. 2013;5(8):3163-83. https://doi.org/10.3390/nu5083163
Adenina S, Louisa M, Soetikno V, Arozal W, Wanandi SI. The effect of alpha mangostin on epithelial-mesenchymal transition on human hepatocellular carcinoma HepG2 cells surviving sorafenib via TGF-v/smad pathways. Adv Pharm Bull. 2020;10(4):648-55. https://doi.org/10.34172/apb.2020.078
Lestari N, Louisa M, Soetikno V, Suwana AG, Ramadhan PA, Akmal T, et al. Alpha mangostin inhibits the proliferation and activation of acetaldehyde induced hepatic stellate cells through TGF-v and ERK 1/2 pathways. J Toxicol. 2018;2018:5360496. https://doi.org/10.1155/2018/5360496
Published
How to Cite
Issue
Section
License
Authors who publish with Medical Journal of Indonesia agree to the following terms:
- Authors retain copyright and grant Medical Journal of Indonesia right of first publication with the work simultaneously licensed under a Creative Commons Attribution-NonCommercial License that allows others to remix, adapt, build upon the work non-commercially with an acknowledgment of the work’s authorship and initial publication in Medical Journal of Indonesia.
- Authors are permitted to copy and redistribute the journal's published version of the work non-commercially (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Medical Journal of Indonesia.