Effects of lung recruitment maneuver using mechanical ventilator in preterm infant microcirculation: a clinical trial

Authors

  • Adhi Teguh Perma Iskandar Department of Child Health, Faculty of Medicine, Universitas Indonesia, Cipto Mangunkusumo Hospital, Jakarta, Indonesia
  • Mulyadi Muhammad Djer Department of Child Health, Faculty of Medicine, Universitas Indonesia, Cipto Mangunkusumo Hospital, Jakarta, Indonesia
  • Bambang Supriyatno Department of Child Health, Faculty of Medicine, Universitas Indonesia, Cipto Mangunkusumo Hospital, Jakarta, Indonesia
  • Risma Kerina Kaban Department of Child Health, Faculty of Medicine, Universitas Indonesia, Cipto Mangunkusumo Hospital, Jakarta, Indonesia
  • Ahmad Kautsar Department of Child Health, Faculty of Medicine, Universitas Indonesia, Cipto Mangunkusumo Hospital, Jakarta, Indonesia
  • Anisa Rahmadhany Department of Child Health, Faculty of Medicine, Universitas Indonesia, Cipto Mangunkusumo Hospital, Jakarta, Indonesia
  • Fiolita Indranita Sutjipto Department of Child Health, Faculty of Medicine, Universitas Indonesia, Cipto Mangunkusumo Hospital, Jakarta, Indonesia
  • Suhendro Department of Internal Medicine, Faculty of Medicine, Universitas Indonesia, Cipto Mangunkusumo Hospital, Jakarta, Indonesia
  • Najib Advani Department of Child Health, Faculty of Medicine, Universitas Indonesia, Cipto Mangunkusumo Hospital, Jakarta, Indonesia
  • Dewi Irawati Soeria Santoso Department of Physiology, Faculty of Medicine, Universitas Indonesia, Cipto Mangunkusumo Hospital, Jakarta, Indonesia
  • Joedo Prihartono Department of Community Medicine, Faculty of Medicine, Universitas Indonesia, Cipto Mangunkusumo Hospital, Jakarta, Indonesia
  • Tetty Yuniati Department of Child Health, Faculty of Medicine, Universitas Padjadjaran, Hasan Sadikin Hospital, Bandung, Indonesia

DOI:

https://doi.org/10.13181/mji.oa.247472

Keywords:

bronchopulmonary dysplasia, endothelial cell, mechanical ventilation, platelet endothelial cell adhesion molecule-1, pulmonary surfactant-associated protein D

Abstract

BACKGROUND Preterm infants often require continuous positive airway pressure due to immature respiratory tracts. Bronchopulmonary dysplasia (BPD) manifests as prolonged oxygen dependence until 28 days of age and is classified into mild, moderate, or severe forms. The lung recruitment maneuver (LRM) aims to reopen collapsed alveoli, enhancing oxygenation during mechanical ventilation using the assist control volume guarantee mode (MV-AC/VG). This study aimed to evaluate the impact of LRM on alveolar and endothelial injuries, neonatal microcirculation, and its relation to BPD reduction or mortality in preterm infants.

METHODS This study was conducted from March 2021 to April 2022 at Cipto Mangunkusumo and Bunda Menteng Hospitals, Jakarta. The participants are <32 weeks infants with severe respiratory distress syndrome requiring MV-AC/VG, divided into LRM and control groups (n = 55 each). The alveolar injury was assessed using plasma surfactant protein-D (SP-D), endothelial injury by flow cytometry for endothelial microparticles (CD-31⁺/CD-42-), and neonatal microcirculation via transcutaneous-artery CO2 gap (TcPCO₂-PaCO₂) and transcutaneous O2 index (TcPO₂/PaO₂) measurements at 1 and 72 hours post-ventilation.

RESULTS LRM did not negatively affect preterm infants (24–32 weeks) undergoing invasive mechanical ventilation. At 72 hours, no significant differences were observed in alveolar (SP-D) and endothelial injury (CD-31+/CD-42-), nor in BPD reduction or mortality by 36 weeks.

CONCLUSIONS LRM is a beneficial intervention for enhancing respiratory support and microcirculation in preterm infants. Among survivors, LRM reduced the time to achieve the lowest FiO2 (60.0 versus 435.0 hours, p<0.0001), shortened respiratory support duration (25.0 versus 36.83 days, p = 0.044), and improved TcO2 index (1.00 versus 1.00, p = 0.009).

Downloads

Download data is not yet available.

References

Bancalari E, Jain D. Bronchopulmonary dysplasia: can we agree on a definition? Am J Perinatol. 2018;35(6):537−40. https://doi.org/10.1055/s-0038-1637761

Gilfillan M, Bhandari A, Bhandari V. Diagnosis and management of bronchopulmonary dysplasia. BMJ. 2021;375:n1974. https://doi.org/10.1136/bmj.n1974

Brener Dik PH, Niño Gualdron YM, Galletti MF, Cribioli CM, Mariani GL. Bronchopulmonary dysplasia: incidence and risk factors. Arch Argent Pediatr. 2017;115(5):476−82. https://doi.org/10.5546/aap.2017.eng.476

Iskandar AT, Kaban RK, Djer MM. Heated, humidified high-flow nasal cannula vs. nasal CPAP in infants with moderate respiratory distress. Paediatr Indones. 2019;59(6):331-9. https://doi.org/10.14238/pi59.6.2019.331-9

Kaban R, Aminullah A, Rohsiswatmo R, Hegar B, Sukadi A, Davis PG. Resuscitation of very preterm infant with 30% vs. 50% oxygen: a randomized controlled trial. Paediatr Indones. 2022;62(2):104-14. https://doi.org/10.14238/pi62.2.2022.104-14

Castoldi F, Daniele I, Fontana P, Cavigioli F, Lupo E, Lista G. Lung recruitment maneuver during volume guarantee ventilation of preterm infants with acute respiratory distress syndrome. Am J Perinatol. 2011;28(7):521−8. https://doi.org/10.1055/s-0031-1272970

Keszler M, Claure N. Ventilator strategies to reduce lung injury and duration of mechanical ventilation. In: Bancalari EH, Keszler M, Davis PG, editor. Neonatology questions and controversies: the newborn lung. Philadelphia: Elsevier; 2019. p. 307-16. https://doi.org/10.1016/B978-0-323-54605-8.00018-0

Kalikkot Thekkeveedu R, El-Saie A, Prakash V, Katakam L, Shivanna B. Ventilation-induced lung injury (VILI) in neonates: evidence-based concepts and lung-protective strategies. J Clin Med. 2022;11(3):557. https://doi.org/10.3390/jcm11030557

Sorensen GL. Surfactant protein D in Respiratory and non-respiratory diseases. Front Med (Lausanne). 2018;5:18. https://doi.org/10.3389/fmed.2018.00018

Dahmer MK, Flori H, Sapru A, Kohne J, Weeks HM, Curley MA, et al. Surfactant protein D is associated with severe pediatric ARDS, prolonged ventilation, and death in children with acute respiratory failure. Chest. 2020;158(3):1027−35. https://doi.org/10.1016/j.chest.2020.03.041

Hu M, Zhang H, Liu Q, Hao Q. Structural basis for human PECAM-1-mediated trans-homophilic cell adhesion. Sci Rep. 2016;6:38655. https://doi.org/10.1038/srep38655

Porto I, De Maria GL, Leone AM, Dato I, D'Amario D, Burzotta F, et al. Endothelial progenitor cells, microvascular obstruction, and left ventricular remodeling in patients with ST elevation myocardial infarction undergoing primary percutaneous coronary intervention. Am J Cardiol. 2013;112(6):782−91. https://doi.org/10.1016/j.amjcard.2013.04.056

Pernick N. CD markers CD42b [Internet]. Pathology Outlines; 2019 [cited 2020 Jul 9]. Available from: https://www.pathologyoutlines.com/topic/cdmarkerscd42b.html.

Villar J, Herrera-Abreu MT, Valladares F, Muros M, Pérez-Méndez L, Flores C, et al. Experimental ventilator-induced lung injury: exacerbation by positive end-expiratory pressure. Anesthesiology. 2009;110(6):1341−7. https://doi.org/10.1097/ALN.0b013e31819fcba9

Wu TW, Azhibekov T, Seri I. Transitional hemodynamics in preterm neonates: clinical relevance. Pediatr Neonatol. 2016;57(1):7−18. https://doi.org/10.1016/j.pedneo.2015.07.002

Ali OG, Ali SS, Elbahy SM. Hemodynamically significant PDA in preterm infants. Benha J Appl Sci. 2024;9(9):25-31. https://doi.org/10.21608/bjas.2024.320453.1500

de Waal K, Seri I. Assessment and management of septic shock and hypovolemia. In: Kluckow M, McNamara PJ, editors. Neonatology questions and controversies: neonatal hemodynamics. Philadelphia: Elsevier; 2019. p. 489-501. https://doi.org/10.1016/B978-0-323-53366-9.00027-2

Wright IM, Stark MJ, Dyson RM. Assessment of the microcirculation in the neonate. In: Kleinman CS, Seri I, editors. Hemodynamics and cardiology: neonatology questions and controversies. Philadelphia: Elsevier; 2019. p. 327-40. https://doi.org/10.1016/B978-0-323-53366-9.00019-3

Kimura S, Shabsigh M, Morimatsu H. Traditional approach versus Stewart approach for acid-base disorders: inconsistent evidence. SAGE Open Med. 2018;6:2050312118801255. https://doi.org/10.1177/2050312118801255

Condò V, Cipriani S, Colnaghi M, Bellù R, Zanini R, Bulfoni C, et al. Neonatal respiratory distress syndrome: are risk factors the same in preterm and term infants? J Matern Fetal Neonatal Med. 2017;30(11):1267−72. https://doi.org/10.1080/14767058.2016.1210597

Committee on Obstetric Practice. Committee opinion No. 713: antenatal corticosteroid therapy for fetal maturation. Obstet Gynecol. 2017;130(2):e102−9. https://doi.org/10.1097/AOG.0000000000002237

Iqbal Q, Younus MM, Ahmed A, Ahmad I, Iqbal J, Charoo BA, et al. Neonatal mechanical ventilation: Indications and outcome. Indian J Crit Care Med. 2015;19(9):523−7. https://doi.org/10.4103/0972-5229.164800

Aziz K, Lee HC, Escobedo MB, Hoover AV, Kamath-Rayne BD, Kapadia VS, et al. Part 5: neonatal resuscitation: 2020 American Heart Association Guidelines for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation. 2020;142(16_suppl_2):S524−50. https://doi.org/10.1161/CIR.0000000000000902

Henderson WR, Dominelli PB, Molgat-Seon Y, Lipson R, Griesdale DE, Sekhon M, et al. Effect of tidal volume and positive end-expiratory pressure on expiratory time constants in experimental lung injury. Physiol Rep. 2016;4(5):e12737. https://doi.org/10.14814/phy2.12737

Valentini R, Aquino-Esperanza J, Bonelli I, Maskin P, Setten M, Danze F, et al. Gas exchange and lung mechanics in patients with acute respiratory distress syndrome: comparison of three different strategies of positive end expiratory pressure selection. J Crit Care. 2015;30(2):334−40. https://doi.org/10.1016/j.jcrc.2014.11.019

Banerjee S, Fernandez R, Fox GF, Goss KC, Mactier H, Reynolds P, et al. Surfactant replacement therapy for respiratory distress syndrome in preterm infants: United Kingdom national consensus. Pediatr Res. 2019;86(1):12−4. https://doi.org/10.1038/s41390-019-0344-5

Elmore A, Almuntashiri A, Wang X, Almuntashiri S, Zhang D. Circulating surfactant protein D: a biomarker for acute lung injury? Biomedicines. 2023;11(9):2517. https://doi.org/10.3390/biomedicines11092517

Arroyo R, Kingma PS. Surfactant protein D and bronchopulmonary dysplasia: a new way to approach an old problem. Respir Res. 2021;22(1):141. https://doi.org/10.1186/s12931-021-01738-4

Briana DD, Gourgiotis D, Baka S, Boutsikou M, Vraila VM, Boutsikou T, et al. The effect of intrauterine growth restriction on circulating surfactant protein D concentrations in the perinatal period. Reprod Sci. 2010;17(7):653−8. https://doi.org/10.1177/1933719110366165

Fandiño J, Toba L, González-Matías LC, Diz-Chaves Y, Mallo F. Perinatal undernutrition, metabolic hormones, and lung development. Nutrients. 2019;11(12):2870. https://doi.org/10.3390/nu11122870

Paszkowiak JJ, Dardik A. Arterial wall shear stress: observations from the bench to the bedside. Vasc Endovascular Surg. 2003;37(1):47−57. https://doi.org/10.1177/153857440303700107

Dagenais A, Desjardins J, Shabbir W, Roy A, Filion D, Sauvé R, et al. Loss of barrier integrity in alveolar epithelial cells downregulates ENaC expression and activity via Ca2⁺ and TRPV4 activation. Pflugers Arch. 2018;470(11):1615−31. https://doi.org/10.1007/s00424-018-2182-4

Dodson RB, Powers KN, Gien J, Rozance PJ, Seedorf G, Astling D, et al. Intrauterine growth restriction decreases NF-κB signaling in fetal pulmonary artery endothelial cells of fetal sheep. Am J Physiol Lung Cell Mol Physiol. 2018;315(3):L348−59. https://doi.org/10.1152/ajplung.00052.2018

Vitvitsky EV, Griffin JP, Collins MH, Spray TL, Gaynor JW. Increased pulmonary blood flow produces endothelial cell dysfunction in neonatal swine. Ann Thorac Surg. 1998;66(4):1372−7. https://doi.org/10.1016/S0003-4975(98)00835-2

Vallée F, Mateo J, Dubreuil G, Poussant T, Tachon G, Ouanounou I, et al. Cutaneous ear lobe Pco₂ at 37°C to evaluate microperfusion in patients with septic shock. Chest. 2010;138(5):1062−70. https://doi.org/10.1378/chest.09-2690

Mari A, Nougue H, Mateo J, Vallet B, Vallée F. Transcutaneous PCO2 monitoring in critically ill patients: update and perspectives. J Thorac Dis. 2019;11(Suppl 11):S1558−67. https://doi.org/10.21037/jtd.2019.04.64

Meza D, Shanmugavelayudam SK, Mendoza A, Sanchez C, Rubenstein DA, Yin W. Platelets modulate endothelial cell response to dynamic shear stress through PECAM-1. Thromb Res. 2017;150:44−50. https://doi.org/10.1016/j.thromres.2016.12.003

Suwarto S, Sasmono RT, Sinto R, Ibrahim E, Suryamin M. Association of endothelial glycocalyx and tight and adherens junctions with severity of plasma leakage in dengue infection. J Infect Dis. 2017;215(6):992−9. https://doi.org/10.1093/infdis/jix041

Han J, Shuvaev VV, Davies PF, Eckmann DM, Muro S, Muzykantov VR. Flow shear stress differentially regulates endothelial uptake of nanocarriers targeted to distinct epitopes of PECAM-1. J Control Release. 2015;210:39−47. https://doi.org/10.1016/j.jconrel.2015.05.006

Published

2025-03-27

How to Cite

1.
Iskandar ATP, Djer MM, Supriyatno B, Kaban RK, Kautsar A, Rahmadhany A, et al. Effects of lung recruitment maneuver using mechanical ventilator in preterm infant microcirculation: a clinical trial. Med J Indones [Internet]. 2025 Mar. 27 [cited 2025 Apr. 2];34(1):21-9. Available from: https://mji.ui.ac.id/journal/index.php/mji/article/view/7472

Issue

Section

Clinical Research

Most read articles by the same author(s)

1 2 3 4 5 > >>