Metaverse in Medical Education

  • Agus Rizal Ardy Hariandy Hamid From Medical Journal of Indonesia; Department of Urology, Faculty of Medicine, Universitas Indonesia, Cipto Mangunkusumo Hospital, Jakarta, Indonesia; Medical Technology, Indonesia Medical Education and Research Institute (IMERI), Jakarta, Indonesia
  • Ferdiansyah Sultan Ayasasmita Rusdhy Universitas Airlangga, Surabaya, Indonesia
  • Prasandhya Astagiri Yusuf Department of Medical Physiology and Biophysics, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia; Medical Technology, Indonesia Medical Education and Research Institute (IMERI), Jakarta, Indonesia https://orcid.org/0000-0002-4212-0794
Keywords: Commentary
Abstract viewed: 310 times
PDF downloaded: 199 times
HTML downloaded: 80 times
EPUB downloaded: 72 times

Abstract

-

References

  1. Skalidis I, Muller O, Fournier S. CardioVerse: the cardiovascular medicine in the era of Metaverse. Trends Cardiovasc Med. 2022:S1050-1738(22)00071-8. https://doi.org/10.1016/j.tcm.2022.05.004

  2. Zhang X, Chen Y, Hu L, Wang Y. The metaverse in education: definition, framework, features, potential applications, challenges, and future research topics. Front Psychol. 2022;13:1016300. https://doi.org/10.3389/fpsyg.2022.1016300

  3. Smart J, Cascio J, Paffendorf J. Metaverse roadmap: pathway to the 3D web [Internet]. Ann Arbor (MI): Acceleration Studies Foundation; 2007 [cited 2021 Nov 29]. Available from: https://metaverseroadmap.org/MetaverseRoadmapOverview.pdf.

  4. Alharbi Y, Al-Mansour M, Al-Saffar R, Garman A, Alraddadi A. Three-dimensional virtual reality as an innovative teaching and learning tool for human anatomy courses in medical education: a mixed methods study. Cureus. 2020;12(2):e7085. https://doi.org/10.7759/cureus.7085

  5. Gonzalez AA, Lizana PA, Pino S, Miller BG, Merino C. Augmented reality-based learning for the comprehension of cardiac physiology in undergraduate biomedical students. Adv Physiol Educ. 2020;44(3):314-22. https://doi.org/10.1152/advan.00137.2019

  6. Al-Elq AH. Simulation-based medical teaching and learning. J Family Community Med. 2010;17(1):35-40. https://doi.org/10.4103/1319-1683.68787

  7. Grant D, Marriage S. Training using medical simulation: Figure 1. Arch Dis Child. 2011;97(3):255-9. https://doi.org/10.1136/archdischild-2011-300592

  8. Meerdink M, Khan J. Comparison of the use of manikins and simulated patients in a multidisciplinary in situ medical simulation program for healthcare professionals in the United Kingdom. J Educ Eval Health Prof. 2021;18:8. https://doi.org/10.3352/jeehp.2021.18.8

  9. Buttussi F, Chittaro L, Valent F. A virtual reality methodology for cardiopulmonary resuscitation training with and without a physical mannequin. J Biomed Inform. 2020;111:103590. https://doi.org/10.1016/j.jbi.2020.103590

  10. Abulfaraj MM, Jeffers JM, Tackett S, Chang T. Virtual reality vs. high-fidelity mannequin-based simulation: a pilot randomized trial evaluating learner performance. Cureus. 2021;13(8):e17091. https://doi.org/10.7759/cureus.17091

  11. Sommer GM, Broschewitz J, Huppert S, Sommer CG, Jahn N, Jansen-Winkeln B, et al. The role of virtual reality simulation in surgical training in the light of COVID-19 pandemic: visual spatial ability as a predictor for improved surgical performance: a randomized trial. Medicine (Baltimore). 2021;100(50):e27844. https://doi.org/10.1097/MD.0000000000027844

  12. Kantamaneni K, Jalla K, Renzu M, Jena R, Kannan A, Jain R, et al. Virtual reality as an affirmative spin-off to laparoscopic training: an updated review. Cureus. 2021;13(8):e17239. https://doi.org/10.7759/cureus.17239

  13. Ghazanfar H, Rashid S, Hussain A, Ghazanfar M, Ghazanfar A, Javaid A. Cadaveric dissection a thing of the past? the insight of consultants, fellows, and residents. Cureus. 2018;10(4):e2418. https://doi.org/10.7759/cureus.2418

  14. Kovacs G, Levitan R, Sandeski R. Clinical cadavers as a simulation resource for procedural learning. AEM Educ Train. 2018;2(3):239-47. https://doi.org/10.1002/aet2.10103

  15. Chia TI, Oyeniran OI, Ajagbe AO, Onigbinde OA, Oraebosi MI. The symptoms and stress experienced by medical students in anatomy dissection halls. J Taibah Univ Med Sci. 2020;15(1):8-13. https://doi.org/10.1016/j.jtumed.2020.01.001

  16. Chang HJ, Kim HJ, Rhyu IJ, Lee YM, Uhm CS. Emotional experiences of medical students during cadaver dissection and the role of memorial ceremonies: a qualitative study. BMC Med Educ. 2018;18(1):255. https://doi.org/10.1186/s12909-018-1358-0

  17. Weyhe D, Uslar V, Weyhe F, Kaluschke M, Zachmann G. Immersive anatomy atlas-empirical study investigating the usability of a virtual reality environment as a learning tool for anatomy. Front Surg. 2018;5:73. https://doi.org/10.3389/fsurg.2018.00073

  18. Lungu AJ, Swinkels W, Claesen L, Tu P, Egger J, Chen X. A review on the applications of virtual reality, augmented reality and mixed reality in surgical simulation: an extension to different kinds of surgery. Expert Rev Med Devices. 2021;18(1):47-62. https://doi.org/10.1080/17434440.2021.1860750

  19. Hamacher A, Whangbo TK, Kim SJ, Chung KJ. Virtual reality and simulation for progressive treatments in urology. Int Neurourol J. 2018;22(3):151-60. https://doi.org/10.5213/inj.1836210.105

  20. Cai JL, Zhang Y, Sun GF, Li NC, Yuan XL, Na YQ. Proficiency of virtual reality simulator training in flexible retrograde ureteroscopy renal stone management. Chin Med J (Engl). 2013;126(20):3940-3.

  21. Rad AA, Vardanyan R, Thavarajasingam SG, Zubarevich A, Van den Eynde J, Sá MP, et al. Extended, virtual and augmented reality in thoracic surgery: a systematic review. Interact Cardiovasc Thorac Surg. 2022;34(2):201-11. https://doi.org/10.1093/icvts/ivab241

  22. Iskander M, Ogunsola T, Ramachandran R, McGowan R, Al-Aswad LA. Virtual reality and augmented reality in ophthalmology: a contemporary prospective. Asia Pac J Ophthalmol (Phila). 2021;10(3):244-52. https://doi.org/10.1097/APO.0000000000000409

  23. Piromchai P. Virtual reality surgical training in ear, nose and throat surgery. Int J Clin Med. 2014;5(10):558-66. https://doi.org/10.4236/ijcm.2014.510077

  24. Hasan LK, Haratian A, Kim M, Bolia IK, Weber AE, Petrigliano FA. Virtual reality in orthopedic surgery training. Adv Med Educ Pract. 2021;12:1295-301. https://doi.org/10.2147/AMEP.S321885

  25. Casso G, Schoettker P, Savoldelli GL, Azzola A, Cassina T. Development and initial evaluation of a novel, ultraportable, virtual reality bronchoscopy simulator: the computer airway simulation system. Anesth Analg. 2019;129(5):1258-64. https://doi.org/10.1213/ANE.0000000000003316

  26. Grottke O, Ntouba A, Ullrich S, Liao W, Fried E, Prescher A, et al. Virtual reality-based simulator for training in regional anaesthesia. Br J Anaesth. 2009;103(4):594-600. https://doi.org/10.1093/bja/aep224

  27. Sankaranarayanan G, Odlozil CA, Hasan SS, Shabbir R, Qi D, Turkseven M, et al. Training on a virtual reality cricothyroidotomy simulator improves skills and transfers to a simulated procedure. Trauma Surg Acute Care Open. 2022;7(1):e000826. https://doi.org/10.1136/tsaco-2021-000826

  28. Aslani N, Behmanesh A, Garavand A, Maleki M, Davoodi F, Shams R. The virtual reality technology effects and features in cardiology interventions training: a scoping review. Med J Islam Repub Iran. 2022;36:77. https://doi.org/10.47176/mjiri.36.77

  29. Besharati Tabrizi L, Mahvash M. Augmented reality-guided neurosurgery: accuracy and intraoperative application of an image projection technique. J Neurosurg. 2015;123(1):206-11. https://doi.org/10.3171/2014.9.JNS141001

  30. Dennler C, Jaberg L, Spirig J, Agten C, Götschi T, Fürnstahl P, et al. Augmented reality-based navigation increases precision of pedicle screw insertion. J Orthop Surg Res. 2020;15:174. https://doi.org/10.1186/s13018-020-01690-x

  31. Lee H, Woo D, Yu S. Virtual reality metaverse system supplementing remote education methods: based on aircraft maintenance simulation. Appl Sci. 2022;12(5):2667. https://doi.org/10.3390/app12052667

  32. Koo H. Training in lung cancer surgery through the metaverse, including extended reality, in the smart operating room of Seoul National University Bundang Hospital, Korea. J Educ Eval Health Prof. 2021;18:33. https://doi.org/10.3352/jeehp.2021.18.33

  33. Giannone F, Felli E, Cherkaoui Z, Mascagni P, Pessaux P. Augmented reality and image-guided robotic liver surgery. Cancers (Basel). 2021;13(24):6268. https://doi.org/10.3390/cancers13246268

  34. Checcucci E, Verri P, Amparore D, Cacciamani GE, Rivas JG, Autorino R, et al. The future of robotic surgery in urology: from augmented reality to the advent of metaverse. Ther Adv Urol. 2023;15:17562872231151853. https://doi.org/10.1177/17562872231151853

  35. Piana A, Gallioli A, Amparore D, Diana P, Territo A, Campi R, et al. Three-dimensional augmented reality-guided robotic-assisted kidney transplantation: breaking the limit of atheromatic plaques. Eur Urol. 2022;82(4):419-26. https://doi.org/10.1016/j.eururo.2022.07.003

  36. Liu G, Deng Y, Zhang S, Lin T, Guo H. Robot-assisted versus conventional open kidney transplantation: a meta-analysis. Biomed Res Int. 2020;2020:2358028. https://doi.org/10.1155/2020/2358028

  37. van Leeuwen FWB, van der Hage JA. Where robotic surgery meets the metaverse. Cancers (Basel). 2022;14(24):6161. https://doi.org/10.3390/cancers14246161

  38. Calabrò RS, Cerasa A, Ciancarelli I, Pignolo L, Tonin P, Iosa M, et al. The arrival of the metaverse in neurorehabilitation: fact, fake or vision? Biomedicines. 2022;10(10):2602. https://doi.org/10.3390/biomedicines10102602

  39. Georgiev DD, Georgieva I, Gong Z, Nanjappan V, Georgiev GV. Virtual reality for neurorehabilitation and cognitive enhancement. Brain Sci. 2021;11(2):221. https://doi.org/10.3390/brainsci11020221

  40. Park MJ, Kim DJ, Lee U, Na EJ, Jeon HJ. A literature overview of virtual reality (vr) in treatment of psychiatric disorders: recent advances and limitations. Front Psychiatry. 2019;10:505. https://doi.org/10.3389/fpsyt.2019.00505

  41. Cerasa A, Gaggioli A, Marino F, Riva G, Pioggia G. The promise of the metaverse in mental health: the new era of MEDverse. Heliyon. 2022;8(11):e11762. https://doi.org/10.1016/j.heliyon.2022.e11762

  42. Tashjian VC, Mosadeghi S, Howard AR, Lopez M, Dupuy T, Reid M, et al. Virtual reality for management of pain in hospitalized patients: results of a controlled trial. JMIR Ment Health. 2017;4(1):e9. https://doi.org/10.2196/mental.7387

  43. Haerling KA. Cost-utility analysis of virtual and mannequin-based simulation. Simul Healthc. 2018;13(1):33-40. https://doi.org/10.1097/SIH.0000000000000280

  44. Chang E, Kim HT, Yoo B. Virtual reality sickness: a review of causes and measurements. Int J Hum-Comput Interact. 2020;36(17):1658-82. https://doi.org/10.1080/10447318.2020.1778351

  45. Wang Z, Kasman M, Martinez M, Rege R, Zeh H, Scott D, et al. A comparative human-centric analysis of virtual reality and dry lab training tasks on the da Vinci surgical platform. J Med Robot Res. 2019;04(03n04):1942007. https://doi.org/10.1142/S2424905X19420078

Published
2023-09-19
How to Cite
1.
Hamid ARAH, Rusdhy FSA, Yusuf PA. Metaverse in Medical Education. Med J Indones [Internet]. 2023Sep.19 [cited 2024May22];32(2):67-4. Available from: http://mji.ui.ac.id/journal/index.php/mji/article/view/6932
Section
Commentary