Indonesian local fetal-weight standard: a better predictive ability for low Apgar score of SGA neonates
Abstract
Background: Accurate assessment of fetal growth is one of crucial components of antenatal care. A generic reference for fetal-weight and birthweight percentiles that can be easily adapted to local populations have been developed by Mikolajczyk and colleagues. This study aimed to validate our own local percentile standard by evaluating the odds ratio (OR) of low 1st and 5th minute Apgar score for small-for-gestational age (SGA) versus those not SGA.
Methods: We used the generic reference tools for fetal-weight and birthweight percentiles developed by Mikolajczyk and colleagues to create our own local standard and then defined the SGA neonates. For validation, we used the database of singleton live deliveries (2,139 birth) during January 1st to December 31st 2013 in Cipto Mangunkusumo Hospital, Jakarta, Indonesia. We compared our reference with that of Hadlock and colleagues. For every reference, the OR of Apgar score <7 at 1st and 5th minutes for infants who were SGA versus those not estimated with bivariate and multivariate analyses.
Results: SGA found in 35% (748/2,139) and 13% (278/2,139) of neonates using the definition derived from Indonesian standard and Hadlock's. OR of Apgar score <7 at 1st and 5th minutes were 3.45 (95% CI=2.56–4.65) and 3.05 (95% CI=1.92–4.83) for the Indonesian local fetal-weight standard compared with respectively 2.14 (95% CI=1.65–2.76) and 1.83 (95% CI=1.21–2.77) for Hadlock and collegues' reference.
Conclusion: Indonesian local fetal-weight standard has a better ability to predict low 1st and 5th minutes Apgar scores of SGA neonates than has the Hadlock and collegues' reference.
Downloads
References
Bloemenkamp KWM. Fetal growth. Int Congr Series. 2005;1279:295–301. https://doi.org/10.1016/j.ics.2005.02.067
Gardosi J. Fetal growth standards: individual and global perspectives. Lancet. 2011;377(9780):1812–4. https://doi.org/10.1016/S0140-6736(11)60507-2
Zhang J, Merialdi M, Platt LD, Kramer MS. Defining normal and abnormal fetal growth: promises and challenges. Am J Obstet Gynecol. 2010;202(6):522–8. https://doi.org/10.1016/j.ajog.2009.10.889
Reeves S, Bernstein IM. Optimal growth modeling. Semin Perinatol. 2008;32(3):148–53. https://doi.org/10.1053/j.semperi.2007.11.001
Morse K, Williams A, Gardosi J. Fetal growth screening by fundal height measurement. Best Pract Res Clin Obstet Gynaecol. 2009;23(6):809–18. https://doi.org/10.1016/j.bpobgyn.2009.09.004
Papageorghiou AT, Ohuma EO, Altman DG, Todros T, Cheikh Ismail L, Lambert A, et al. International standards for fetal growth based on serial ultrasound measurements: the Fetal Growth Longitudinal Study of the INTERGROWTH-21st Project. Lancet. 2014;384(9946):869–79. https://doi.org/10.1016/S0140-6736(14)61490-2
Gelbaya TA, Nardo LG. Customised fetal growth chart: a systematic review. J Obstet Gynaecol. 2005;25(5):445–50. https://doi.org/10.1080/01443610500160444
Kiserud T, Johnsen SL. Biometric assessment. Best Pract Res Clin Obstet Gynaecol. 2009;23(6):819–31. https://doi.org/10.1016/j.bpobgyn.2009.06.007
Visser GH, Eilers PH, Elferink-Stinkens PM, Merkus HM, Wit JM. New Dutch reference curves for birthweight by gestational age. Early Hum Dev. 2009;85(12):737–44. https://doi.org/10.1016/j.earlhumdev.2009.09.008
Gardosi J, Francis A. A customized standard to assess fetal growth in a US population. Am J Obstet Gynecol. 2009;201(1):25e1–7. https://doi.org/10.1016/j.ajog.2009.04.035
Miller J, Turan S, Baschat AA. Fetal growth restriction. Semin Perinatol. 2008;32:274–80. https://doi.org/10.1053/j.semperi.2008.04.010
Mikolajczyk RT, Zhang J, Betran AP, Souza JP, Mori R, Gülmezoglu AM, et al. A global reference for fetal-weight and birthweight percentiles. Lancet. 2011;377(9780):1855–61. https://doi.org/10.1016/S0140-6736(11)60364-4
Hadlock FP, Harrist RB, Martinez-Poyer J. In utero analysis of fetal growth: a sonographic weight standard. Radiology. 1991;181(1):129–33. https://doi.org/10.1148/radiology.181.1.1887021
Gardosi J, Mongelli M, Wilcox M, Chang A. An adjustable fetal weight standard. Ultrasound Obstet Gynecol. 1995;6(3):168–74. https://doi.org/10.1046/j.1469-0705.1995.06030168.x
Ersdal HL, Mduma E, Svensen E, Perlman J. Birth asphyxia: a major cause of early neonatal mortality in a Tanzanian rural hospital. Pediatrics. 2012;129(5):e1238–43. https://doi.org/10.1542/peds.2011-3134
Copyright (c) 2017 Adly N.A. Fattah, Karina N. Pratiwi, Sulaeman A. Susilo, Jimmy S.N. Berguna, Rima Irwinda, Noroyono Wibowo, Budi I. Santoso, Jun Zhang
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with Medical Journal of Indonesia agree to the following terms:
- Authors retain copyright and grant Medical Journal of Indonesia right of first publication with the work simultaneously licensed under a Creative Commons Attribution-NonCommercial License that allows others to remix, adapt, build upon the work non-commercially with an acknowledgment of the work’s authorship and initial publication in Medical Journal of Indonesia.
- Authors are permitted to copy and redistribute the journal's published version of the work non-commercially (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Medical Journal of Indonesia.