The effect of Bifidobacterium animalis lactis HNO19 supplementation among pregnant and lactating women on interleukin-8 level in breast milk and infant’s gut mucosal integrity

Naomi E.F. Dewanto, Agus Firmansyah, Ali Sungkar, Nani Dharmasetiawani, Sudigdo Sastroasmoro, Siti B. Kresno, Rulina Suradi, Saptawati Bardosono, Dwi Prasetyo



DOI: http://dx.doi.org/10.13181/mji.v26i3.1481

Abstract


Background: Newborn’s gut mucosal is not fully developed, therefore infants are prone to diarrhea. Probiotic supplementation is known to induce the gut mucosal maturity. This study aimed to identify whether probiotics supplementation among pregnant women since the third trimester would increase the infant’s gut mucosal integrity.

Methods: A double-blind, randomized clinical trial was conducted to understand the potential effect of probiotic supplementation on the level of probiotics and IL-8 in breastmilk, urine IFABP, faecal α-1-antytripsin (AAT) and calprotectin in infant’s at birth (V0) and three-months old (V3). A single strain of Bifidobacterium lactis animalis HNO19 (known as DR10) was used since it was not the resident bacteria. The study was held at Budi Kemuliaan Hospital and its satellite clinics from December 2014 to December 2015.

Results: About 14% (5/35) and 20% (7/35) of the subjects had DR10 in the breastmilk’s colostrum and at the age of 3-months. The median values of IL-8 in the probiotic group vs the placebo group at V0 and V3 were 2810,1 pg/mL vs 1516.4 pg/mL (p=0.327) and 173.2 pg/mL vs 132.7 pg/mL (p=0.211) respectively. IFABP level 211.7 ng/mL vs 842.5 ng/mL (p=0.243) and 25.3 ng/mL vs 25.1 ng/mL (p=0.466); AAT 136.2 mg/dL vs 148.1 mg/dL (p=0.466) and 24 mg/mL vs 29.72 mg/mL (p=0.545); Calprotectin 746.8 ng/mL vs 4645.2 ng/mL (p=0.233) and 378.6 ng/mL vs 391.3 ng/mL (p=0.888).

Conclusion: Probiotic DR10 given to pregnant women since the 3rd trimester can be found in colostrum and 3-months breastmilk. However, it did not affect the level of other probiotics or IL-8 and the gut mucosal integrity.


Keywords


Bifidobacterium lactis animalis HNO19; breastmilk; gut mucosal integrity

Full Text:

PDF

References


  1. Burrin DG. Physiology of gastrointestinal tract in fetus and neonate. Dalam: Polin RA, Fox WW, Abman SH, eds. Fetal and neonatal physiology. 4th ed. USA: Elsevier Saunders; 2011:1181.
  2. Jakaitis BM, Dening PW. Human breast milk and gastrointestinal innate immune system. Clin Perinatol. 2014;41(2):423–35. https://doi.org/10.1016/j.clp.2014.02.011
  3. Villoslada FL, Olivares M, Sierra S, Rodriguez JM, Boza J, Xaus J. Benneficial effects of probiotic bacteria isolated from breast milk. Brit J Nutr. 2007;98:S96–S100. https://doi.org/10.1017/S0007114507832910
  4. Jeurink PV, Bergenhenegowen JV, Jimenez E, Knippels LM, Fernaindez L, Garssen J et al. Human milk: a source of more life than we imagine. Benef Microbes. 2013;4(1):17–30. https://doi.org/10.3920/BM2012.0040
  5. Martin R, Jiminez E, Heilig H, Fernandez L, Martin ML, Zoetendal EG et al. Isolation of bifidobacteria from breast milk and assessment of the bifidobacterial population by PCR-Deanturing gradient gel electrophoresis and quantitative real-time PCR. Appl Enviro Microbiol. 2009;75:965–9. https://doi.org/10.1128/AEM.02063-08
  6. Ahmed M, Prasad J, Gill H, Stevenson L, Gopal P. Impact of consumption of different levels of Bifidobacterium lactis HNO 19 on the intstinal microflora of elderly human subjects. J Nutr Health Aging. 2007;11(1):26–31.
  7. Derrien M, Vlieg JET VH. Fate, activity, and impact of ingested bacteria within the human gut microbiota. Trends Microbiol. 2015;23(6):354–66. https://doi.org/10.1016/j.tim.2015.03.002
  8. Maheshwari A, Lu W, Lacson A, Barleycorn AA, Nolan S, Christensen RD, et al. Effects of interleukin-8 on the developing human intestine. Cytokine. 2002;20(6):256–68. https://doi.org/10.1006/cyto.2002.1996
  9. Lammers KM, Helwig U, Swennen E, Rizzello F, Venturi A, Caramelli E, et al. Effect of probiotic strains on interleukin 8 production by HT29/19A cells. Am J Gastroesterol, 2002; 97(5):1182–6. https://doi.org/10.1111/j.1572-0241.2002.05693.x
  10. HK 310 Human IL-8 Elisa Kit. Product Information and Manual, Vol. 02-10. p. 1–14.
  11. Hycult Biotech. HK 406 human I-FABP ELISA kit. Product information and manual. Edisi 08-13, p.1–14.
  12. Manual of α-1 antitrypsin ELISA. EIA-5299. Version: 4.0. Feb 2015.
  13. Human Kalprotektin in Stool ELISA. Protokol. Pediatric Research Unit. Departemen Ilmu Kesehatan Anak. FKUI 2009. Indonesian.
  14. Oswari H, Prayitno L, Dwipoerwantoro PG, Firmansyah A, Makrides M, Lawley B, et al. Comparison of stool mikrobiota compositions, stool alpha1-antitrypsin and calprotectin concentrations, and diarrhoeal morbidity of Indonesian infants fed breast milk or probiotic/prebiotic-supplemented formula. J Paediatr Child Health. 2013;49(12):1032–9. https://doi.org/10.1111/jpc.12307
  15. Kailasapathy K, Chin J. Survival and therapeutic potential of probiotic organisms with reference to Lactobacillus acidophilus and Bifidobacterium spp. Immunol Cell Biol. 2000;78(1):80–8. https://doi.org/10.1046/j.1440-1711.2000.00886.x
  16. Soto A, Martín V, Jiménez E, Mader I, Rodríguez JM, Fernández L. Lactobacilli and bifidobacteria in human breast milk: influence of antibiotherapy and other host and clinical factors. J Pediatr Gastroenterol Nutr. 2014;59(1):78–88. https://doi.org/10.1097/MPG.0000000000000347
  17. Rautava S, Luoto R, Salminen S, Isolauri E. Microbial contact during pregnancy, intestinal colonization and human disease. Nat Rev Gastroenterol Hepatol. 2012;9(10):565–76. https://doi.org/10.1038/nrgastro.2012.144
  18. Collado MC, Rautava S, Salminen S, Isolauri E. Gut mikrobiota: a source of novel tools to reduce the risk of human disease? Pediatr Res. 2015;72(1–2):182–8. https://doi.org/10.1038/pr.2014.173
  19. Ustundag B, Yilmaz E, Dogan Y, Akarsu S, Canatan H, Halifeoglu I, et al. Levels of cytokines (IL-1beta, IL-2, IL-6, IL-8, TNF-alpha) and trace elements (Zn, Cu) in breast milk from mothers of preterm and term infants. Mediators Inflamm. 2005(6):331–6. https://doi.org/10.1155/MI.2005.331
  20. Gregory KE, Winston AB, Yamamoto HS, Dawood HY, Fashemi T, Fichorova NR, et al. Urinary IFABP predicts necrotizing enterocolitis within seven days prior to clinical onset. J Pediatr. 2014;164:1486–8. https://doi.org/10.1016/j.jpeds.2014.01.057
  21. Tangsilsat D, Atamasirikul K, Treepongkaruna S, Nathsevee S, Sumritsopak R, Kunakom M. Faecal alpha –antitrypsin in healthy and intestinal disorder Thai children. J Med Assoc Thai. 2007;90:1317–22.
  22. Rouge C, Butel MJ, Piloquet H, et al. Faecal calprotectin excretion inpreterm infants during the neonatal period. PLoS One. 2010;5(6):1–6. https://doi.org/10.1371/journal.pone.0011083
  23. Kapel N, Campeotto F, Kalach N, Baidassare M, Butel MJ, Dupont C. Faecal calprotectin in term and preterm neonates. J Pediatr Gastroenterol Nutr. 2010;51:542–7. https://doi.org/10.1097/MPG.0b013e3181e2ad72
  24. Collad MC, Laitinen K, Salminen S, Isolauri E. Maternal weight and excessive weight gain during pregnancy modify the immunomodulatory potential of breast milk. Pediatr Res. 2012;72:77–85. https://doi.org/10.1038/pr.2012.42
  25. Badan Penelitian dan Pengembangan Kesehatan Kementerian Kesehatan RI [Internet]. Riset kesehatan dasar 2013. [update 2013; cited January 2015] Available from: http://www.riskesdas.litbang.depkes.go.id/2013. Indonesian.





Copyright (c) 2017 Naomi Esthernita Dewanto, Agus Firmansyah, Ali Sungkar, Nani Dharmasetiawani, Sudigdo Sastroasmoro, Siti Boedina Kresno, Rulina Suradi, Saptawati Bardosono, Dwi Prasetyo

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

All articles and issues in Medical Journal of Indonesia have unique DOI number registered in Crossref.
 
Romeo
 
http://mji.ui.ac.id/journal/index.php/mji/pages/view/stat
Unique Visitors