TMEPAI genome editing in triple negative breast cancer cells

Authors

  • Bantari W.K. Wardhani Doctoral Program in Biomedicine, Faculty of Medicine, Universitas Indonesia, Jakarta
  • Meidi U. Puteri Medical Sciences Master Program, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki
  • Yukihide Watanabe Department of Experimental Pathology, Faculty of Medicine, University of Tsukuba, Ibaraki
  • Melva Louisa Department of Pharmacology and Therapeutics, Faculty of Medicine, Universitas Indonesia, Jakarta
  • Rianto Setiabudy Department of Pharmacology and Therapeutics, Faculty of Medicine, Universitas Indonesia, Jakarta
  • Mitsuyasu Kato Department of Experimental Pathology, Faculty of Medicine, University of Tsukuba, Ibaraki

DOI:

https://doi.org/10.13181/mji.v26i1.1871

Keywords:

CRISPR/Cas9, gene editing, knock-out cell lines

Abstract

Background: Clustered regularly interspaced short palindromic repeats/CRISPR-associated 9 (CRISPR/Cas9) is a powerful genome editing technique. It consists of RNA-guided DNA endonuclease Cas9 and single guide RNA (gRNA). By combining their expressions, high efficiency cleavage of the target gene can be achieved, leading to the formation of DNA double-strand break (DSB) at the genomic locus of interest which will be repaired via NHEJ (non-homologous end joining) or HDR (homology-directed repair) and mediate DNA alteration. We aimed to apply the CRISPR/Cas9 technique to knock-out the transmembrane prostate androgen-induced protein (TMEPAI) gene in the triple negative breast cancer cell line.

Methods: Designed gRNA which targets the TMEPAI gene was synthesized, annealed, and cloned into gRNA expression vector. It was co-transfected into the TNBC cell line using polyethylenimine (PEI) together with Cas9-GFP and puromycin resistant gene vector. At 24-hours post-transfection, cells were selected by puromycin for 3 days before they were cloned. Selected knock-out clones were subsequently checked on their protein levels by western blotting.

Results: CRISPR/Cas9, a genome engineering technique successfully knocked-out TMEPAI in the Hs578T TNBC cell line. Sequencing shows a frameshift mutation in TMEPAI. Western blot shows the absence of TMEPAI band on Hs578T KO cells.

Conclusion: TMEPAI gene was deleted in the TNBC cell line using the genomic editing technique CRISPR/Cas9. The deletion was confirmed by genome and protein analysis.

Downloads

Download data is not yet available.

References

Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F. Genome engineering using the CRISPR-Cas9 system. Nat Protoc. 2013;8(11):2281–308. https://doi.org/10.1038/nprot.2013.143

Tycko J, Myer VE, Hsu PD. Methods for optimizing CRISPR-Cas9 genome editing specificity. Mol Cell. 2016;63(3):356–70. https://doi.org/10.1016/j.molcel.2016.07.004

Sánchez-Rivera FJ, Jacks T. Applications of CRISPR-Cas9 system in cancer biology. Nat Rev Cancer. 2015;15(7):387–95. https://doi.org/10.1038/nrc3950

Weinberg RA. The biology of cancer. 2nd edition. New York: Garland Sence; 2013.

Singha PK, Pandeswara S, Geng H, Lan R, Venkatachalam MA, Saikumar P. TGF-v induced TMEPAI/PMEPA1 inhibits canonical Smad signaling through R-Smad sequestration and promotes non-canonical PI3K/Akt signaling by reducing PTEN in triple negative breast cancer. Genes Cancer. 2014;5(9-10):320–36 DOI: 10.18632/genesandcancer.30

Foulkes WD, Smith IE, Reis-Fielho JS. Triple negative breast cancer. N Eng J Med. 2010;363:1938–48. https://doi.org/10.1056/NEJMra1001389

Watanabe Y, Itoh S, Goto T, Ohnishi E, Inamitsu M, Itoh F, et al. TMEPAI, a transmembrane TGF-v- inducible protein, sequesters Smad proteins from active participation in TGF-beta signaling. Mol Cell. 2010;37(1):123–34. https://doi.org/10.1016/j.molcel.2009.10.028

Vo Nguyen TT, Watanabe Y, Shiba A, Noguchi M, Itoh S, Kato M. TMEPAI/PMEPA1 enhances tumorigenic activities in lung cancer cells. Cancer Sci. 2014;105(3):334–41. https://doi.org/10.1111/cas.12355

CRISPRdirect-Rational design of CRISPR/Cas target [available from: https://crispr.dbcls.jp]

Itoh S, Thorikay M, Kowanetz M, Moustakas A, Itoh F, Heldin CH, et al. Elucidation of Smad requirement in transforming growth factor-beta type I receptor-induced responses. J Biol Chem. 2003;278(6):3751–61. https://doi.org/10.1074/jbc.M208258200

Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, et al. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013;339(6121):819–23. https://doi.org/10.1126/science.1231143

Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, et al. RNA-guided human genome engineering via Cas9. Science. 2013;339(6121):823–6. https://doi.org/10.1126/science.1232033

Falahi F, Sgro A, Blancafort P. Epigenome engeenering in cancer: fairytale or a realistic path to the clinics?. Front Oncol. 2015;5:1–11. https://doi.org/10.3389/fonc.2015.00022

Vo Nguyen TT. Tumorigenic function of TMEPAI in cancer. Tulips University of Tsukuba Library. 2014. p.13

Xu LL, Shanmugam N, Segawa T, Sesterhenn IA, McLeod DG, Moul JW, et al. A novel androgen- regulated gene, PMEPA1, located on chromosome 20q13 exhibits high level expression in prostate. Genomic. 2000;66(3):257–63. https://doi.org/10.1006/geno.2000.6214

Giannini G, Ambrosini MI, Di Marcotullio L, Cerignoli F, Zani M, MacKay AR, et al. EGF- and cell-cycle-regulated STAG1/PMEPA1/ERG1.2 belongs to a conserved gene family and is overexpressed and amplified in breast and ovarian cancer. Mol Carcinog. 2003;38(4):188–200. https://doi.org/10.1002/mc.10162

Fournier PG, Juárez P, Jiang G, Clines GA, Niewolna M, Kim HS, et al. The TGF-v signaling regulator PMEPA1 supresses prostate cancer metastases to bone. Cancer Cell. 2015;27(6):809–21. https://doi.org/10.1016/j.ccell.2015.04.009

Brunschwig EB, Wilson K, Mack D, Dawson D, Lawrence E, Willson JK, et al. PMEPA1, a transforming growth factor-beta-induced marker of terminal colonocyte differentiation whose expression is maintained in primary and metastatic colon cancer. Cancer Res. 2003;63(7):1568–75.

Published

2017-05-16

How to Cite

1.
Wardhani BW, Puteri MU, Watanabe Y, Louisa M, Setiabudy R, Kato M. TMEPAI genome editing in triple negative breast cancer cells. Med J Indones [Internet]. 2017May16 [cited 2024Dec.11];26(1):14-8. Available from: http://mji.ui.ac.id/journal/index.php/mji/article/view/1871

Issue

Section

Basic Medical Research
Abstract viewed = 2271 times

Most read articles by the same author(s)

1 2 3 > >>