TMEPAI genome editing in triple negative breast cancer cells

  • Bantari W.K. Wardhani Doctoral Program in Biomedicine, Faculty of Medicine, Universitas Indonesia, Jakarta
  • Meidi U. Puteri Medical Sciences Master Program, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki
  • Yukihide Watanabe Department of Experimental Pathology, Faculty of Medicine, University of Tsukuba, Ibaraki
  • Melva Louisa Department of Pharmacology and Therapeutics, Faculty of Medicine, Universitas Indonesia, Jakarta
  • Rianto Setiabudy Department of Pharmacology and Therapeutics, Faculty of Medicine, Universitas Indonesia, Jakarta
  • Mitsuyasu Kato Department of Experimental Pathology, Faculty of Medicine, University of Tsukuba, Ibaraki
Keywords: CRISPR/Cas9, gene editing, knock-out cell lines
Abstract viewed: 2245 times
PDF downloaded: 1023 times
HTML downloaded: 89 times
EPUB downloaded: 111 times


Background: Clustered regularly interspaced short palindromic repeats/CRISPR-associated 9 (CRISPR/Cas9) is a powerful genome editing technique. It consists of RNA-guided DNA endonuclease Cas9 and single guide RNA (gRNA). By combining their expressions, high efficiency cleavage of the target gene can be achieved, leading to the formation of DNA double-strand break (DSB) at the genomic locus of interest which will be repaired via NHEJ (non-homologous end joining) or HDR (homology-directed repair) and mediate DNA alteration. We aimed to apply the CRISPR/Cas9 technique to knock-out the transmembrane prostate androgen-induced protein (TMEPAI) gene in the triple negative breast cancer cell line.

Methods: Designed gRNA which targets the TMEPAI gene was synthesized, annealed, and cloned into gRNA expression vector. It was co-transfected into the TNBC cell line using polyethylenimine (PEI) together with Cas9-GFP and puromycin resistant gene vector. At 24-hours post-transfection, cells were selected by puromycin for 3 days before they were cloned. Selected knock-out clones were subsequently checked on their protein levels by western blotting.

Results: CRISPR/Cas9, a genome engineering technique successfully knocked-out TMEPAI in the Hs578T TNBC cell line. Sequencing shows a frameshift mutation in TMEPAI. Western blot shows the absence of TMEPAI band on Hs578T KO cells.

Conclusion: TMEPAI gene was deleted in the TNBC cell line using the genomic editing technique CRISPR/Cas9. The deletion was confirmed by genome and protein analysis.


Download data is not yet available.


  1. Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F. Genome engineering using the CRISPR-Cas9 system. Nat Protoc. 2013;8(11):2281–308.

  2. Tycko J, Myer VE, Hsu PD. Methods for optimizing CRISPR-Cas9 genome editing specificity. Mol Cell. 2016;63(3):356–70.

  3. Sánchez-Rivera FJ, Jacks T. Applications of CRISPR-Cas9 system in cancer biology. Nat Rev Cancer. 2015;15(7):387–95.

  4. Weinberg RA. The biology of cancer. 2nd edition. New York: Garland Sence; 2013.

  5. Singha PK, Pandeswara S, Geng H, Lan R, Venkatachalam MA, Saikumar P. TGF-β induced TMEPAI/PMEPA1 inhibits canonical Smad signaling through R-Smad sequestration and promotes non-canonical PI3K/Akt signaling by reducing PTEN in triple negative breast cancer. Genes Cancer. 2014;5(9-10):320–36 DOI: 10.18632/genesandcancer.30

  6. Foulkes WD, Smith IE, Reis-Fielho JS. Triple negative breast cancer. N Eng J Med. 2010;363:1938–48.

  7. Watanabe Y, Itoh S, Goto T, Ohnishi E, Inamitsu M, Itoh F, et al. TMEPAI, a transmembrane TGF-β- inducible protein, sequesters Smad proteins from active participation in TGF-beta signaling. Mol Cell. 2010;37(1):123–34.

  8. Vo Nguyen TT, Watanabe Y, Shiba A, Noguchi M, Itoh S, Kato M. TMEPAI/PMEPA1 enhances tumorigenic activities in lung cancer cells. Cancer Sci. 2014;105(3):334–41.

  9. CRISPRdirect-Rational design of CRISPR/Cas target [available from:]

  10. Itoh S, Thorikay M, Kowanetz M, Moustakas A, Itoh F, Heldin CH, et al. Elucidation of Smad requirement in transforming growth factor-beta type I receptor-induced responses. J Biol Chem. 2003;278(6):3751–61.

  11. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, et al. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013;339(6121):819–23.

  12. Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, et al. RNA-guided human genome engineering via Cas9. Science. 2013;339(6121):823–6.

  13. Falahi F, Sgro A, Blancafort P. Epigenome engeenering in cancer: fairytale or a realistic path to the clinics?. Front Oncol. 2015;5:1–11.

  14. Vo Nguyen TT. Tumorigenic function of TMEPAI in cancer. Tulips University of Tsukuba Library. 2014. p.13

  15. Xu LL, Shanmugam N, Segawa T, Sesterhenn IA, McLeod DG, Moul JW, et al. A novel androgen- regulated gene, PMEPA1, located on chromosome 20q13 exhibits high level expression in prostate. Genomic. 2000;66(3):257–63.

  16. Giannini G, Ambrosini MI, Di Marcotullio L, Cerignoli F, Zani M, MacKay AR, et al. EGF- and cell-cycle-regulated STAG1/PMEPA1/ERG1.2 belongs to a conserved gene family and is overexpressed and amplified in breast and ovarian cancer. Mol Carcinog. 2003;38(4):188–200.

  17. Fournier PG, Juárez P, Jiang G, Clines GA, Niewolna M, Kim HS, et al. The TGF-β signaling regulator PMEPA1 supresses prostate cancer metastases to bone. Cancer Cell. 2015;27(6):809–21.

  18. Brunschwig EB, Wilson K, Mack D, Dawson D, Lawrence E, Willson JK, et al. PMEPA1, a transforming growth factor-beta-induced marker of terminal colonocyte differentiation whose expression is maintained in primary and metastatic colon cancer. Cancer Res. 2003;63(7):1568–75.

How to Cite
Wardhani BW, Puteri MU, Watanabe Y, Louisa M, Setiabudy R, Kato M. TMEPAI genome editing in triple negative breast cancer cells. Med J Indones [Internet]. 2017May16 [cited 2024Jul.21];26(1):14-8. Available from:
Basic Medical Research