Nine-segment laminectomy is safe for the resection of a schwannoma extending from C-2 to T-3: a rare case report
Abstract
Cervical spine schwannoma, which is long and entirely intracanal, is rare to be found. Its rarity and atypical feature leads to difficulty in diagnosing and managing cases because of the scarcity of available literature. The surgical removal of this type of schwannomas via multisegment laminectomy is a great challenge because of various risks of postoperative complications. This report describes cervical spine schwannoma that was initially was not suspected as schwannoma and was subject to surgical removal via nine-segment laminectomy. In one year after surgery, motor function returned to normal strength, no new neurological deficits occurred, and no kyphotic deformity, which is a common complication of multisegment laminectomy.
Downloads
References
Jinnai T, Koyama T. Clinical characteristics of spinal nerve sheath tumors: analysis of 149 cases. Neurosurgery. 2005;56(3):510-5. https://doi.org/10.1227/01.NEU.0000153752.59565.BB
Kim SH, Doh JW, Yoon SM, Yun IG. Huge schwannoma extended from craniocervical junction to upper thoracic spine. J Korean Neurosurg Soc. 2003;34(6):589-92.
Mahore A, Muzumdar D, Chagla A, Goel A. Pure ventral midline long segment Schwannoma of the cervicodorsal spine: a case report. Turk Neurosurg. 2009;19(3):302-5.
Das JM, Peethambaran A. Total excision of a giant ventral midline cervical spinal intradural schwannoma via posterior approach. Asian Spine J. 2016;10(1):153-7. https://doi.org/10.4184/asj.2016.10.1.153
Kaptain GJ, Simmons NE, Replogle RE, Pobereskin L. Incidence and outcome of kyphotic deformity following laminectomy for cervical spondylotic myelopathy. J Neurosurg. 2000;93(2 suppl):199-204. https://doi.org/10.3171/spi.2000.93.2.0199
Mehta AI, Adogwa O, Karikari IO, Thompson P, Verla T, Null UT, et al. Anatomical location dictating major surgical complications for intradural extramedullary spinal tumors: a 10-year single-institutional experience. J Neurosurg Spine. 2013;19(6):701-7. https://doi.org/10.3171/2013.9.SPINE12913
Modi M, Nilkanthe R, Trivedi P, Shah A, Shah J, Chaudhari J. Importance of intraoperative consultation for the diagnosis of central nervous system lesions and evaluation of its diagnostic accuracy. J Cancer Res Ther. 2018;14(6):1176-9. https://doi.org/10.4103/0973-1482.191034
Plesec TP, Prayson RA. Frozen section discrepancy in the evaluation of central nervous system tumors. Arch Pathol Lab Med. 2007;131(10):1532-40. https://doi.org/10.1043/1543-2165(2007)131[1532:FSDITE]2.0.CO;2
Nanarng V, Jacob S, Mahapatra D, Mathew JE. Intraoperative diagnosis of central nervous system lessions: comparison of squash smear, touch imprint, and frozen section. J Cytol 2016;32(3):153-8. https://doi.org/10.4103/0970-9371.168835
Al-Ajmi R, Al-Kindi H, George M, Thomas K. Correlation of intraoperative frozen section report and histopathological diagnosis of central nervous system tumors - a six-year retrospective study. Oman Med J. 2016;31(6):414-20. https://doi.org/10.5001/omj.2016.84
Çakir E, Oran G, Yüksek GE, Ding C, Tihan T. Intraoperative consultations of central nervous system tumors: a review for practicing pathologists and testing of an algorithmic approach. Turk Patoloji Derg. 2019;35(3):173-84. https://doi.org/10.5146/tjpath.2018.01460
Gogoi G, Teronpi J, Changsan LL, Saikia P, Borgohain M. A study on schwannomas: morphology alone is insufficient. J Mol Biomark Diagn. 2016;7(5):300. https://doi.org/10.4172/2155-9929.1000300
Jaiswal S. Role of immunohistochemistry in the diagnosis of central nervous system tumors. Neurol India 2016;64:502-12. https://doi.org/10.4103/0028-3886.181547
Boulagnon-Rombi C, Fleury C, Fichel C, Lefour S, Bressenot AM, Gauchotte G. Immunohistochemical approach to the differential diagnosis of meningiomas and their mimics. J Neuropathol Exp Neurol. 2017;76(4):289-98. https://doi.org/10.1093/jnen/nlx008
Jialal I, Sokoll LJ. Clinical utility of lactate dehydrogenase: a historical perspective. Am J Clin Pathol. 2015;143(2):158-9. https://doi.org/10.1309/AJCTP0FC8QFYDFA
Bochen K, Krasowska A, Milaniuk S, Kulczyńska M, Prystupa A, Dzida G. Erythrocyte sedimentation rate - an old marker with new applications. J Pre Clin Clin Res. 2011;5(2):50-5.
Yeh HM, Leung JH, Huang KC, Tung CL, Huang CL, Huang KM. A long segmental hemorrhagic spinal schwannoma with atypical presentation. J Radiol Sci. 2011;36:191-4.
Ji C, Ahn JG, Huh HY, Park CK. Cervical schwannoma presenting with acute intracranial subarachnoid hemorrhage. J Korean Neurosurg Soc. 2010;47(2):137-9. https://doi.org/10.3340/jkns.2010.47.2.137
Sahoo RK, Das PB, Sarangi GS, Mohanty S. Acute hemorrhage within intradural extramedullary schwannoma in cervical spine presenting with quadriparesis. J Craniovertebr Junction Spine. 2015;6(2):83-5. https://doi.org/10.4103/0974-8237.156069
Ando K, Imagama S, Ito Z, Kobayashi K, Yagi H, Hida T, et al. How do spinal schwannomas progress? The natural progression of spinal schwannomas on MRI. J Neurosurg Spine. 2016;24(1):155-9. https://doi.org/10.3171/2015.3.SPINE141218
Lenzi J, Anichini G, Landi A, Piciocchi A, Passacantilli E, Pedace F, et al. Spinal nerve schwannomas: experience on 367 cases-historic overview on how clinical, radiological, and surgical practices have changed over a course of 60 years. Neurol Res Int. 2017;2017:3568359. https://doi.org/10.1155/2017/3568359
Zong S, Zeng G, Du L, Fang Y, Gao T, Zhao J. Treatment results in the different surgery of intradural extramedullary tumor of 122 cases. PLoS One. 2014;9(11):e111495. https://doi.org/10.1371/journal.pone.0111495
Parihar VS, Yadav N, Yadav YR, Ratre S, Bajaj J, Kher Y. Endoscopic management of spinal intradural extramedullary tumors. J Neurol Surg A Cent Eur Neurosurg. 2017;78(3):219-26. https://doi.org/10.1055/s-0036-1594014
Sciubba DM, Chaichana KL, Woodworth GF, McGirt MJ, Gokaslan ZL, Jallo GI. Factors associated with cervical instability requiring fusion after cervical laminectomy for intradural tumor resection. J Neurosurg Spine. 2008;8(5):413-9. https://doi.org/10.3171/SPI/2008/8/5/413
Lu FZ, Zhang F, Xia XL, Ma XS, Wang LX, Jiang JY. Reconstruction to decrease postoperative deformity after cervical benign extramedullary tumor resection. Int J Clin Exp Med. 2016;9(4):7234-46.
Onyia CU, Menon SK. Laminectomy versus laminoplasty in the surgical management of long-segment intradural spinal tumors: any difference in neurological outcomes? Asian J Neurosurg. 2018;13(4):1128-33. https://doi.org/10.4103/ajns.AJNS_67_18
McGirt MJ, Garcés-Ambrossi GL, Parker SL, Sciubba DM, Bydon A, Wolinksy JP, et al. Short-term progressive spinal deformity following laminoplasty versus laminectomy for resection of intradural spinal tumors: analysis of 238 patients. Neurosurgery. 2010;66(5):1005-12. https://doi.org/10.1227/01.NEU.0000367721.73220.C9
VanPelt C, Ulibarri JA, Kang JD. Cervical kyphosis following laminectomy: etiology, prevention, and surgical reconstruction. Semin Spine Surg. 2006;18(4):202-6. https://doi.org/10.1053/j.semss.2006.09.006
Vavklen P, Ganal-Antonio AK, Quidde J, Shen FH, Chapman JR, Samartzis D. Fundamentals of clinical outcomes assessment for spinal disorders: clinical outcome instruments and applications. Global Spine J. 2015;5(4):329-38. https://doi.org/10.1055/s-0034-1396046
Zileli M, Maheswari S, Kale SS, Garg K, Menon SK, Parthiban J. Outcome measures and variables affecting prognosis of cervical spondylotic myelopathy: WFNS spine committee recommendations. Neurospine. 2019;16(3):435-47. https://doi.org/10.14245/ns.1938196.098
Lam T, Noonan VK, Eng JJ, the SCIRE Research Team. A systematic review of functional ambulation outcome measures in spinal cord injury. Spinal Cord. 2008;46(4):246-54. https://doi.org/10.1038/sj.sc.3102134
Poncumhak P, Saengsuwan J, Kamruecha W, Amatachaya S. Reliability and validity of three functional tests in ambulatory patients with spinal cord injury. Spinal Cord. 2013;51(3):214-7. https://doi.org/10.1038/sc.2012.126
Copyright (c) 2020 Mohamad Saekhu, Nuryati Chairani Siregar, Kevin Gunawan, Setyowidi Nugroho
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with Medical Journal of Indonesia agree to the following terms:
- Authors retain copyright and grant Medical Journal of Indonesia right of first publication with the work simultaneously licensed under a Creative Commons Attribution-NonCommercial License that allows others to remix, adapt, build upon the work non-commercially with an acknowledgment of the work’s authorship and initial publication in Medical Journal of Indonesia.
- Authors are permitted to copy and redistribute the journal's published version of the work non-commercially (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Medical Journal of Indonesia.