Correlation between urinary albumin to creatinine ratio and systemic glycocalyx degradation in pediatric sepsis

Authors

  • Rina A.C. Saragih Department of Child Health, Faculty of Medicine, Universitas Sumatera Utara, Haji Adam Malik Hospital, Medan
  • Antonius H. Pudjiadi Department of Child Health, Faculty of Medicine, Universitas Indonesia, Cipto Mangunkusumo Hospital, Jakarta
  • Taralan Tambunan Department of Child Health, Faculty of Medicine, Universitas Indonesia, Cipto Mangunkusumo Hospital, Jakarta
  • Hindra I. Satari Department of Child Health, Faculty of Medicine, Universitas Indonesia, Cipto Mangunkusumo Hospital, Jakarta
  • Diana Aulia Department of Clinical Pathology, Faculty of Medicine, Universitas Indonesia, Cipto Mangunkusumo Hospital, Jakarta
  • Saptawati Bardosono Department of Clinical Nutrition, Faculty of Medicine, Universitas Indonesia, Cipto Mangunkusumo Hospital, Jakarta
  • Zakiudin Munasir Department of Child Health, Faculty of Medicine, Universitas Indonesia, Cipto Mangunkusumo Hospital, Jakarta
  • Munar Lubis Department of Child Health, Faculty of Medicine, Universitas Sumatera Utara, Haji Adam Malik Hospital, Medan

DOI:

https://doi.org/10.13181/mji.v27i3.2156

Keywords:

glycocalyx degradation, sepsis, syndecan-1, urinary albumin, creatinine ratio
Abstract viewed: 1418 times
PDF downloaded: 918 times
HTML downloaded: 178 times
EPUB downloaded: 111 times

Abstract

Background: Increased capillary permeability in sepsis is associated with several complications and worse outcomes. Glycocalyx degradation, marked by increased serum syndecan-1 levels, alters vascular permeability, which can manifest as albuminuria in the glomerulus. Therefore, elevated urinary albumin to creatinine ratio (ACR) potentially provides an index of systemic glycocalyx degradation. The aim of this study was to analyze the correlation between urinary ACR and serum syndecan-1 levels.

Methods: A longitudinal prospective study with repeated cross-sectional design was conducted on children with sepsis in pediatric intensive care unit, we evaluated serum syndecan-1 levels and urinary ACR on days 1, 2, 3, and 7. A descriptive study on healthy children was also conducted to determine the reference value of syndecan-1 in children.

Results: 49 subjects with sepsis were recruited. Based on the data of the healthy children group (n=30), syndecan-1 level of >90th percentile (41.42 ng/mL) was defined as systemic glycocalyx degradation. The correlation coefficients (r) between urinary ACR and syndecan-1 levels were 0.32 (p<0.001) from all examination days (162 specimens), 0.298 (p=0.038) on day 1, and 0.469 (p=0.002) on day 3. The area under the curve of urinary ACR and systemic glycocalyx degradation was 65.7% (95% CI 54.5%–77%; p=0.012). Urinary ACR ≥157.5 mg/g was determined as the cut-off point for glycocalyx degradation, with a sensitivity of 77.4% and a specificity of 48%.

Conclusion: Urinary ACR showed a weak correlation with systemic glycocalyx degradation, indicating that the pathophysiology of elevated urinary ACR in sepsis is not merely related to glycocalyx degradation.

Downloads

Download data is not yet available.

References

Watson RS, Carcillo JA, Linde-Zwirble WT, Clemont G, Lidicker J, Angus DC. The epidemiology of severe sepsis in children in the United States. Am J Respir Crit Care Med. 2003;167(5):695-701. https://doi.org/10.1164/rccm.200207-682OC

Pawitan JA. Potential agents against plasma leakage. ISRN Pharmacol. 2011;2011:975048. https://doi.org/10.5402/2011/975048

Chappell D, Westphal M, Jacob M. The impact of the glycocalyx on microcirculatory oxygen distribution in critical illness. Curr Opin Anaesthesiol. 2009;22(2):155-62. https://doi.org/10.1097/ACO.0b013e328328d1b6

Ochonidky P, Henning RH, van Dokkum RP, de Zeeuw D. Microalbuminuria and endothelial dysfunction: emerging targets for primary prevention of end-organ damage. J Cardiovasc Pharmacol. 2006;47:S151-62. https://doi.org/10.1097/00005344-200606001-00009

Bendjelid K, Giraud R, Siegenthaler N, Michard F. Validation of a new transpulmonary thermodilution system to assess global end-diastolic volume and extravascular lung water. Crit Care. 2010;14(6):R209. https://doi.org/10.1186/cc9332

Chelazzi C, Villa G, Mancinelli P, De Gaudio AR, Adembri C. Glycocalyx and sepsis-induced alterations in vascular permeability. Crit Care. 2015;19(1):26. https://doi.org/10.1186/s13054-015-0741-z

Donati A, Tibboel D, Ince C. Towards integrative physiological monitoring of the critically ill: from cardiovascular to microcirculatory and cellular function monitoring at the bedside. Crit Care. 2013;17(Suppl1):S5. https://doi.org/10.1186/cc11503

Johansen ME. Hemostasis and endothelial damage during sepsis. Dan Med J. 2015;62(8):B5135.

Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney inter., Suppl. 2013;3:1-150.

Singh A, Satchell SC. Microalbuminuria: causes and implications. Pediatr Nephrol. 2011;26(11):1957-65. https://doi.org/10.1007/s00467-011-1777-1

Bhadade RR, de Souza R, Harde MJ, Sridhar B. Microalbuminuria: a biomarker of sepsis and efficacy of treatment in patients admitted to a medical intensive care unit of a tertiary referral center. J Postgrad Med. 2014;60(2):145-50. https://doi.org/10.4103/0022-3859.132320

Anil AB, Anil M, Yildiz M, Kamit Can F, Bal A, Gokalp G, et al. The importance of microalbuminuria in predicting patient outcome in a PICU. Pediatr Crit Care Med. 2014;15(5):e220-5. https://doi.org/10.1097/PCC.0000000000000113

Salmon AH, Satchell SC. Endothelial glycocalyx dysfunction in disease: albuminuria and increased microvascular permeability. J Pathol. 2012;226(4):562-74. https://doi.org/10.1002/path.3964

Goldstein B, Giroir B, Randolph A. International pediatric sepsis consensus conference: definitions for sepsis and organ dysfunction in pediatrics. Pediatr Crit Care Med 2005;6(1):2-8. https://doi.org/10.1097/01.PCC.0000149131.72248.E6

Kwak BO, Lee ST, Chung S, Kim KS. Microalbuminuria in normal Korean children. Yonsei Med J. 2011;52(3):476-81. https://doi.org/10.3349/ymj.2011.52.3.476

Varda NM. Microalbuminuria in pediatric patients with hypertension. Health. 2013;5(4A):40-6. https://doi.org/10.4236/health.2013.54A006

Hurtado A, Cancino R, Figueroa J, Padilla E, Morales C, Ortiz I, et al. Microalbuminuria in healthy adolescents: a comparative study at high altitude and at sea level. Open Urol Nephrol J. 2014;7:82-5. https://doi.org/10.2174/1874303X01407010082

Çekiç C, K?rc? A, Vatansever S, Aslan F, Yilmaz HE, Alper E, et al. Serum syndecan-1 levels and its relationship to disease activity in patients with Crohn's disease. Gastroenterol Res Pract. 2015;2015:850351. https://doi.org/10.1155/2015/850351

Thorburn K, Baines PB. Broken barriers, biomarkers, and blocking antibodies—endothelial activation in sepsis*: no snowflake in an avalanche ever feels responsible. –Voltaire/François-Marie Arouet (1694–1778). Pediatr Crit Care Med. 2013;14(7): 720–1.

Teng YH, Aquino RS, Park PW. Molecular functions of syndecan-1 in disease. Matrix Biol. 2011;31(1):3-16. https://doi.org/10.1016/j.matbio.2011.10.001

Ostrowski SR, Haase N, Müller RB, Møller MH, Pott FC, Perner A, et al. Association between biomarkers of endothelial injury and hypocoagulability in patients with severe sepsis: a prospective study. Crit Care. 2015;19(1):191.

Rehm M, Bruegger D, Christ F, Conzen P, Thiel M, Jacob M, et al. Shedding of the endothelial glycocalyx in patients undergoing major vascular surgery with global and regional ischemia. Circulation. 2007;116(17):1896-906. https://doi.org/10.1161/CIRCULATIONAHA.106.684852

D'Amico G, Bazzi C. Pathophysiology of proteinuria. Kidney Int. 2003;63(3):809-25. https://doi.org/10.1046/j.1523-1755.2003.00840.x

Saragih RA, Mandei JM, Yuniar I, Dewi R, Pardede SO, Pudjiadi A, et al. Using pRIFLE criteria for acute kidney injury in critically ill children. Paeditr Indones. 2013;53(1):32-6. https://doi.org/10.14238/pi53.1.2013.32-6

Ackan-Arikan A, Zappitelli M, Loftis LL, Washburn KK, Jefferson LS, Goldstein SL. Modified RIFLE criteria in critically ill children with acute kidney injury. Kidney Int. 2007; 71(10):1028-35. https://doi.org/10.1038/sj.ki.5002231

Published

2018-10-12

How to Cite

1.
Saragih RA, Pudjiadi AH, Tambunan T, Satari HI, Aulia D, Bardosono S, Munasir Z, Lubis M. Correlation between urinary albumin to creatinine ratio and systemic glycocalyx degradation in pediatric sepsis. Med J Indones [Internet]. 2018Oct.12 [cited 2024Dec.22];27(3):194-200. Available from: http://mji.ui.ac.id/journal/index.php/mji/article/view/2156

Issue

Section

Clinical Research
Abstract viewed = 1418 times
PDF downloaded = 918 times HTML downloaded = 178 times EPUB downloaded = 111 times

Most read articles by the same author(s)

1 2 3 > >>